36 resultados para COMB NOV
em University of Queensland eSpace - Australia
Resumo:
The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb, nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668(T), are presented.
Resumo:
Analysis of the 16S rDNA sequence of Conglomeromonas largomobilis subsp. largomobilis supports a phylogenetic relationship with the species of the genus Azospirillum. This confirms results of previous nucleic acid hybridization studies (FALK, E. C., J. L. JOHNSON, V. D. L. BALDANI, J. DOBEREINER, and N. R. KRIEG. 1986. Int. J. Syst. Bacteriol. 36: 80-85). Conglomeromonas largomobilis subsp. largomobilis was most closely related to the species Azospirillim lipoferum and Azospirillum brasilense but sufficiently distant to warrant separate species status. Conglomeromonas largomobilis subsp. parooensis was more distantly related to the existing species of Azospirillum and represents an isolated subline of descent. On the basis of the phylogenetic evidence a prosposal is made to transfer the subspecies Conglom-eromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov. and to retain the genus Conglomeromonas by elevating the subspecies C. largomobilis subsp. parooensis to the type species of Conglomeromonas as Conglomeromonas parooensis sp. nov.
Resumo:
The budding bacterium Blastobacter natatorius belongs to the alpha-4 group of the Proteobacteria and clusters phylogenetically on a deep branch with Sphingomonas capsulata, with which it shares 93.9% 16S rRNA sequence similarity. On phylogenetic, phenotypic, and chemotaxonomic grounds a proposal is made to transfer B. natatorius to the genus Blastomonas gen, nov. as Blastomonas natatoria comb, nov.
Resumo:
The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.
Resumo:
Analysis of the 16S rDNA sequences of species currently assigned to the genus Herpetosiphon revealed intrageneric phylogenetic heterogeneity. The thermotolerant freshwater species Herpetosiphon geysericola is most closely related to the type species Herpetosiphon aurantiacus in the Chloroflexus Subdivision of the green non-sulfur bacteria, The marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus, on the other hand, were found to form a cluster with the sheathed bacterium Haliscomenobacter hydrossis in the Saprospira group of the Flexibacter-Bacteroides-Cytophaga (FBC) phylum. A proposal is made to transfer these marine species to the genus Lewinella gen. nov. as Lewinella cohaerens comb, nov., Lewinella nigricans comb. nov, and Lewinella persica comb. nov. The marine sheathed gliding bacterium Flexithrix dorotheae was also found to be a member of the FBC phylum but on a separate phylogenetic line to the marine herpetosiphons now assigned to the genus Lewinella.
Resumo:
Two Gram-positive, non-motile, non-spore-forming, strictly aerobic, pigmented cocci, strains Ben 107(T) and Ben 108(T), growing in aggregates were isolated from activated sludge samples by micromanipulation. Both possessed the rare type A3 gamma' peptidoglycan. Major menaquinones of strain Ben 107(T) were MK-9(H-4) and MK-7(H-2), and the main cellular fatty acid was 12-methyltetradecanoic acid (ai-C-15:0). In strain Ben 108(T), MK-9(H-4), MK-9(H-2) and MK-7(H-4) were the menaquinones and again the main fatty acid was 12-methyltetradecanoic acid (ai-C-15:0). Polar lipids in both strains consisted of phosphatidyl inositol, phosphatidyl glycerol and diphosphatidyl glycerol with two other unidentified glycolipids and phospholipids also present in both. These data, together with the 16S rDNA sequence data, suggest that strain Ben 107(T) belongs to the genus Friedmanniella which presently includes a single recently described species, Friedmanniella antarctica. Although the taxonomic status of strain Ben 108(T) is far less certain, on the basis of its 16S rRNA sequence it is also adjudged to be best placed in the genus Friedmanniella, The chemotaxonomic characteristics and DNA-DNA hybridization data support the view that Ben 107(T) and Ben 108(T) are novel species of the genus Friedmanniella. Hence, it is proposed that strain Ben 107(T) (=ACM 5121(T)) is named as Friedmanniella spumicola sp. nov. and strain Ben 108(T) (=ACM 5120(T)) as Friedmanniella capsulata sp. nov.
Resumo:
An emended diagnosis and generic reallocation are proposed for the trilete miospore Indotriradites dolianitii (Daemon, 1974) Loboziak et al., comb. nov. A new species, I. daemonii Loboziak et al., sp. nov., from Viséan strata of Western Gondwana, is erected. These two species, together with I. zosteriformis (Playford et Satterthwait) Playford, 1991 from the Viséan of Australia, belong to a cohesive morphological miospore category, here termed the Indotriradites dolianitii Morphon, which is evidently restricted to the Lower Carboniferous of Gondwana.
Resumo:
Determination of the 16S rRNA gene sequence of Caulobacter subvibrioides ATCC 15264(T) (T = type strain) confirmed that this species is a member of the alpha subclass of the Proteobacteria and showed that it is phylogenetically most closely related to the Caulobacter group comprising the species Caulobacter bacteroides, Caulobacter crescentus, and Brevandimonas (Pseudomonas) diminuta, for which 16S rRNA sequences of the type strains are currently available. The closest known relative of strain ATCC 15264(T) among these species is B. diminuta (level of direct pairwise sequence similarity, 95%). On the basis of its previously determined 16S rRNA sequence (accession number M83797), C. subvibrioides is most closely related to Sphingomonas adhaesiva in the alpha-4 subgroup (level of similarity, 97.7%). Analysis of the hydroxy fatty acids of C. subvibrioides ATCC 15264(T) showed that the 2-hydroxymyristic acid which is characteristic of the genus Sphingomonas was absent.
Resumo:
Benedenia Diesing, 1858, a genus of capsalid (benedeniine) monogeneans, is redefined. The generic diagnosis is amended to include: the path of tendons in the haptor from extrinsic muscles in the body; presence and form of the marginal valve; a penis occupying a penis canal with weakly muscular wall; a weakly muscular accessory gland reservoir proximal to the penis and enclosed by a proximal extension of the wall of the penis canal; male and female genital apertures usually common, rarely separate; vagina with pore usually close to the common genital pore but may open in mid body between the germarium and the common genital pore, or anterior to the common genital pore. A conservative approach is adopted and the generic diagnosis is clarified and broadened to accommodate species that display some variation in reproductive anatomy, especially of the female system. We argue against potential alternative actions such as defining Benedenia strictly to contain species with separate male and female genital apertures and against recognition of a separate genus, Tareenia Hussey, 1986, for species with a vaginal pore anterior to the common genital pore. Under our conception, Benedenia comprises 21 species: B. sciaenae (van Beneden, 1856) Odhner, 1905 (type species); B. acanthopagri (Hussey, 1986) comb. nov.; B. anticavaginata Byrnes, 1986; B. bodiani Yamaguti, 1968; B. elongata (Yamaguti, 1968) Egorova, 1997; B. epinepheli (Yamaguti, 1937) Meserve, 1938; B. hawaiiensis Yamaguti, 1968; B. hendorffi(von Linstow, 1889) Odhner, 1905; B. hoshinai Ogawa, 1984; B. innobilitata Burhnheim Gomes and Varela, 1973: B. jaliscana Bravo-Hollis, 1952; B. lolo Yamaguti, 1968; B. lutjani Whittington and Kearn, 1993: B. monticellii (Parona and Perugia, 1895) Johnston, 1929; B. ovata (Goto, 1894) Johnston. 1929: B. pompatica Burhnheim, Gomes and Varela, 1973; B. rohdei Whittington, Kearn and Beverley-Burton, 1994; B. scari Yamaguti, 1968; B. sekii (Yamaguti, 1937) Meserve, 1938; B, seriolae (Yamaguti, 1934) Meserve, 1938; and B. synagris Yamaguti, 1953. The type species, B. sciaenae, is redescribed based on new material from Australia. No types for this taxon were designated and we have assigned a series of voucher specimens. Tareenia acanthopagri Hussey, 1986 becomes B. acanthopagri (Hussey, 1986) comb. nov. and T. anticavaginata (Byrnes, 1986) Egorova, 1997 and T. lutjani (Whittington and Kearn, 1993) Egorova, 1997 are returned to Benedenia as B. anticavaginata and B. lutjani Benedenia akaisaki Iwata, 1990 is considered a synonym of B. ovata and B. kintoki Iwata, 1990 is considered a synonym of B. elongata. Two species, B, madai Ishii and Sawada, 1938 and B. pagrosomi Ishii and Sawada, 1938, are considered species inquirendae. Based on the redefinition of Benedenia, the diagnosis for the Benedeniinae is amended. Tareenia is synonymized with Benedenia but Menziesia Gibson, 1976 is recognized and its generic diagnosis amended to include: anterior attachment organs tending to form a 'hooded' appearance; prominent anterior gland cells between the pharynx and the anterior margin of the body: long penis, tapering proximally, occupying a penis canal with weakly muscular wall: penis canal and penis describe a sigmoid; accessory gland reservoir dorsal and alongside, or posterior and lateral to, proximal end of the penis and enclosed by a proximal extension of the wall of the penis canal. Under this conception. Menziesia comprises: M. noblei (Menzies. 1946) Gibson, 1976 (type species); M. malaboni (Velasquez. 1982) comb. nov.: M. merinthe (Yamaguti, 1968) Gibson. 1976: M. ovalis (Yamaguti, 1968) Gibson, 1976: and M. sebastodis (Yamaguti, 1934) comb, nov. A key to valid species of Benedenia and Menziesia is provided and a list is presented of published records of undescribed or unattributed species of Benedenia. Some protocols are suggested for preparation of benedeniine material to enhance future taxonomic studies and comparisons. The host-specificity and geographic distribution of species in these revised genera are discussed. The composition of the Capsalidae is discussed and some difficulties in defining and distinguishing between its different subfamilies are considered.
Resumo:
A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Members of the flightless genus Apterotheca Gebien (Coleoptera : Tenebrionidae) are mostly restricted to the high elevation rainforests of the Wet Tropics World Heritage Area of north-eastern Australia. This region has been recognised as an 'epicentre of evolution for low vagility animals'. The genus Apterotheca is the most diverse low vagility insect taxon known in this region. Forty-four species are included here in a revision of the genus. Three of these species were previously included in Apterotheca (A. antaroides (Pascoe), A. besti (Blackburn) and A. punctipennis Carter), four were previously included in other genera (A. australis (Kulzer), comb. nov. and A. punctifrons (Gebien), comb. nov. in Apterophenus Gebien, A. costata (Buck), comb. nov. in Caxtonana Buck and A. pustulosa (Carter), comb. nov. in Austropeus Carter) and 37 are new. The monotypic genera Austropeus Carter, syn. nov. and Caxtonana Buck, syn. nov. are proposed as new synonyms of Apterotheca. A lectotype for A. punctipennis and A. besti are designated. A key to the species of Apterotheca and a phylogenetic analysis based on the morphological features of adults, as well as a discussion of character evolution, are also included. Data presented here represent the framework for future studies on the determinants of the patterns of diversity found in the Wet Tropics.
Resumo:
Intraerythrocytic bodies identified as haemogregarine gamonts were found in 29% of 97 brown tree snakes (Boiga irregularis) examined during a haematological survey of reptiles in Australasia during 1994-1998. The morphological characteristics of the parasites were consistent with those of Haemogregarina boigae Mackerras, 1961, although the gamonts were slightly larger and lacked red caps but contained distinctive polar grey capsules. Gamonts did not distend host cells but laterally displaced their nuclei. They were contained within parasitophorous vacuoles and possessed typical apicomplexan organelles, including a conoid, polar rings, rhoptries and micronemes. Schizonts producing up to 30 merozoites were detected in endothelial cells of the lungs of 11 snakes. The absence of erythrocytic schizogony suggests the parasites belong to the genus Hepatozoon. Electron microscopy also revealed the presence of curious encapsulated organisms in degenerating erythrocytes. These stages did not possess apical complex organelles and were surrounded by thick walls containing circumferential junctions and interposed strips reminiscent of oocyst sutures.
Resumo:
A new bioeroding sponge belonging to the genus Cliona is described from the Australian Great Barrier Reef, Cliona minuscula, sp. nov. As the sponge lacked microscleres, comparison with existing clionaid species was difficult. We considered 15 other species of Cliona with only tylostyles: C. alderi, C. arenosa. C. caesia nov. comb., C. californiana, C. celata, C. delitrix, C. dissimilis, C. ecaudis, C. insidiosa, C. janitrix, C. kempi, C. laticavicola, C. macgeachii, C. millepunctata and C. peponaca. Characters of all species are presented in table-form to facilitate comparison during future studies. We listed additional species of Cliona that were not directly compared to the new species, because they were either invalid, insufficiently described, or they may not be obligate bioeroders. The form and dimensions of the megascleres of C. minuscula, sp. nov. indicated that it is distinct from all considered species. Its mean tylostyle dimensions were 225.3 mu m length, 4.5 mu m shaft width and 6.8 mu m tyle width, which is comparatively small. Because other morphological features were small as well ( erosion chambers, papillar diameter), this species was named C. minuscula. The species record for sponges of the genus Cliona reported from Australia is now 11.
Resumo:
Glossocercus chelodinae (MacCallum, 1921) n. comb. is redescribed from fresh material recovered from the intestine of an Australian freshwater turtle, Chelodina expansa. G. chelodinae can be distinguished from all other species of the genus by the shape of its rostellar hooks. it is suggested that this species has colonised fish-eating turtles from fish-eating birds. The morphological relationships among Parvitaenia, Bancroftiella and Glossocercus are discussed. The diagnosis of Bancroftiella is amended and marsupials are eliminated as hosts. Bancroftiella sudarikovi Spasskii & Yurpalova, 1970 becomes a synonym of Glossocercus glandularis (Fuhrmann, 1905); only B. tennis Johnston, 1911, the type-species, and B. ardeae Johnston, 1911 remain in the genus.
Resumo:
Ten Australian representatives from seven of the 10 genera presently constituting the family Cystolcloniaceae have been analyzed for their cell-wall galactans. Included in our survey are the monotypic Australian-endemic genera Austroclonium, Gloiophyllis, Erythronaema, and Stictosporum, one species of Craspedocarpus, three species of Rhodophyllis, and two species of Calliblepharis. As one of the species of the latter genus is endemic to Western Australia and presently undescribed, we illustrate its habit and anatomical features in formally proposing to name it Calliblepharis celatospora Kraft, sp. nov. All the species surveyed essentially produce typical iota (iota)-carrageenans, with the exception of Austroclonium. The sulfated galactans from Austroclonium predominantly contain the repeating units of iota-, alpha (alpha)-, and 6'-O-methylated iota- and alpha-carrageenans; whether these exist as discrete polysaccharides or a complex hybrid structure was not resolved. Thus, Austroclonium carrageenans resemble the polysaccharides from Rhabdonia, Areschougia, and Erythroclonium. Although these latter three genera are currently included in the large gigartinalean family Solieriaceae, all produce significantly different carrageenans from Solieria itself and related genera such as Eucheuma, Kappaphycus, Betaphycus, Sarcodiotheca, Agardhiella, Sarconema, and Callophycus. In consideration of these findings, as well as of significant anatomical similarities, we provisionally recommend reestablishment of the family Rhabdoniaceae Kylin (as the family Areschougiaceae J. Agardh) for Rhabdonia, Areschougia, Erythroclonium, and Austroclonium.