66 resultados para COLLOIDAL NANOCOMPOSITES

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking the reaction history is the means of choice to identify bioactive compounds in large combinatorial libraries. The authors describe two approaches to synthesis on silica beads: a) addition of a reporter dye tag during each synthesis step (see Figure), which attaches itself to the bead by colloidal forces, and b) encapsulating arrays of fluorescent dyes into the beads to encode them uniquely, for recognition with a flow cytometer after each reaction step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enormous amount of information generated through sequencing of the human genome has increased demands for more economical and flexible alternatives in genomics, proteomics and drug discovery. Many companies and institutions have recognised the potential of increasing the size and complexity of chemical libraries by producing large chemical libraries on colloidal support beads. Since colloid-based compounds in a suspension are randomly located, an encoding system such as optical barcoding is required to permit rapid elucidation of the compound structures. We describe in this article innovative methods for optical barcoding of colloids for use as support beads in both combinatorial and non-combinatorial libraries. We focus in particular on the difficult problem of barcoding extremely large libraries, which if solved, will transform the manner in which genomics, proteomics and drug discovery research is currently performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of polyethylene-layered silicate nanocomposites has been studied as possible new candidates for rotational moulding. Two organically treated layered silicates were melt-compounded into a maleated linear low-density polyethylene host polymer at loadings of 6 and 9%, by weight. The morphology and properties of the nanocomposites were assessed by using dynamic mechanical thermal analysis, parallel-plate rheometry, wide-angle X-ray diffraction and transmission electron microscopy. The sintering behaviour of the nanocomposites was qualitatively assessed via hot-stage microscopy, indicating that the choice of nanofiller will play an important role in terms of producing nanocomposite materials with acceptable processability for rotational moulding. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of an organically surface modified layered silicate on the viscosity of various epoxy resins of different structures and different functionalities was investigated. Steady and dynamic shear viscosities of the epoxy resins containing 0-10 wt% of the organoclay were determined using parallel plate rheology. Viscosity results were compared with those achieved through addition of a commonly used micron-sized CaCO3 filler. It was found that changes in viscosities due to the different fillers were of the same order, since the layered silicate was only dispersed on a micron-sized scale in the monomer (prior to reaction), as indicated by X-ray diffraction measurements. Flow activation energies at a low frequency were determined and did not show any significant changes due to the addition of organoclay or CaCO3. Comparison between dynamic and steady shear experiments showed good agreement for low layered silicate concentrations below 7.5 wt%, i.e. the Cox-Merz rule can be applied. Deviations from the Cox-Merz rule appeared at and above 10 wt%, although such deviations were only slightly above experimental error. Most resin organoclay blends were well predicted by the Power Law model, only concentrations of 10 wt% and above requiring the Herschel-Buckley (yield stress) model to achieve better fits. Wide-angle X-ray measurements have shown that the epoxy resin swells the layered silicate with an increase in the interlayer distance of approximately 15 Angstrom, and that the rheology behavior is due to the lateral, micron-size of these swollen tactoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities, was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ann of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous Solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison has been made between the spectroscopic properties of the laser dye rhodamine 6G (R6G) in mesostructured titanium dioxide (TiO2) and in ethanol. Steady-state excitation and emission techniques have been used to probe the dye-matrix interactions. We show that the TiO2-nanocomposite studied is a good host for R6G, as it allows high dye concentrations, while keeping dye molecules isolated, and preventing aggregation. Our findings have important implications in the context of solid state dye-lasers and microphotonic device applications. (C) 2003 Elsevier B.V. All rights reserved.