25 resultados para COALESCENCE

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been carried out to characterise the performance of polymer stabilisers, partially hydrolysed polyvinyl acetate (PVAc), used in suspension polymerisation processes. The stabilisers are ranked by their ability to stabilise the dispersion characterised by the median coalescence time of a single drop with its homophase at a planar liquid/liquid interface. Results show that the stability of the dispersion relates closely to the molecular properties of the PVAcs. Other conditions being equal, PVAcs with higher molecular weights or lower degrees of hydrolysis can better stabilise a liquid-liquid dispersion. The stability of the dispersion also depends strongly on where the PVAc resides. The presence of a PVAc in the dispersed phase significantly reduces stability. Consistent with results reported in the literature, considerable scatter has been observed on the coalescence times of identical drops under the same conditions. An explanation for the scatter is also proposed in the paper, based on the classical Reynolds model for film thinning. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granule impact deformation has long been recognised as important in determining whether or not two colliding granules will coalesce. Work in the last 10 years has highlighted the fact that viscous effects are significant in granulation. The relative strengths of different formulations can vary with strain rate. Therefore, traditional strength measurements made at pseudo-static conditions give no indication, even qualitatively, of how materials will behave at high strain rates, and hence are actually misleading when used to model granule coalescence. This means that new standard methods need to be developed for determining the strain rates encountered by granules inside industrial equipment and also for measuring the mechanical properties of granules at these strain rates. The constitutive equations used in theoretical models of granule coalescence also need to be extended to include strain-rate dependent components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slumping of hardsetting seedbeds upon wetting is likely to determine the shrinking and development of strength on drying. Different processes have been invoked, including aggregate disruption, material relocation, and compaction. To gain a better understanding of the role played by compaction compared with aggregate disruption in seedbed slumping and shrinking, mechanical analysis was combined with previous morphogenetical description. The global structural behavior of repacked seedbeds of a hardsetting sandy loam soil was studied after wetting and again after subsequent drying. Bulk density was measured in 5-mm-depth increments using gamma attenuation, and water content was determined at 10-mm-depth increments. Various wetting conditions were used to simulate a range of climatic and management conditions, including flood irrigation, furrow irrigation of a formed seedbed, drip irrigation, and rainfall. Aggregate coalescence under overburden pressure played the main role in slumping, even though microcracking enhanced coalescence. Most of the slumping occurred at calculated effective stress > 1.1 kPa. Intense aggregate breakdown at the top of seedbeds under fast wetting led to slight slumping because the resulting clogging of the initial interaggregate packing voids was balanced, in part, by the increase in microporosity resulting from aggregate disruption. However, aggregate coalescence induced by overburden pressure developing at the seedbed bottom often resulted in a strong decrease in total porosity. The effect of rainfall kinetic energy on crust bulk density was strong compared with the effect of fast wetting (bulk density increase of about 0.07 Mg m(-3) and 0.03 Mg m(-3), respectively) and could be ascribed to compaction rather than to aggregate breakdown. Shrinking on drying was related to the continuity of the microstructure resulting from wetting rather than to the intensity of slumping. Aggregate breakdown led to more shrinking than did aggregate coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand rock bolt Stress Corrosion Cracking (SCC), a series of experiments have been performed in Linearly Increasing Stress Test (LIST) apparatus. One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for Steel A, and 800 MPa for Steel B and C). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. Typical crack velocity values have been measured to be 2.5 x 10(-8) m s(-1), indicating that there is not much benefit for rock bolt steel of higher fracture toughness. Another series of experiments were performed to understand the environmental conditions causing SCC of steel A and galvanised Steel A rock bolt steel. SCC only occurred for environmental conditions for which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Fracture surfaces of LIST samples failed by SCC were found to display the same fracture regions as fracture surfaces of rock bolts failed in service by SCC: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS), quasi Micro Void Coalescence (qMVC) and Fast Fracture Surface (FFS). Water chemistry analysis were carried out on samples collected from various Australian mines in order to compare laboratory electrolyte conditions to those found in underground mines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the growth and compaction behaviour of chalcopyrite (copper concentrate), batch granulation tests were carried out using a rotating drum. The granule growth exhibited induction-type behaviour, as defined by Iveson and Litster [AIChE J. 44 (1998) 15 10]. There were two consecutive stages during granulation: the induction stage, during which the granules are gradually being compacted and little or no growth occurs, and the rapid growth stage, which starts when the granules have become surface wet and are rapidly growing. In agreement with earlier findings. an increased amount of binder liquid shortened the induction time. The compaction behaviour was also investigated. A displaced volume method was adopted to determine the porosity of the granules. It was shown that this technique had a limitation as it was unable to detect the reduction of the volumes of the granule pores after the granules had become surface wet. Due to this, some of the measurements were not suited for fitting a three-parameter empirical model. Attempts were made to determine whether the rapid growth stage started with the pore saturation exceeding a certain critical value, but due to the scatter in the porosity measurements and the fact that some of the measurements could not be used, it was not possible to determine a critical pore saturation, However, the porosity measurements clearly demonstrated that the porosity of the granules decreased during the induction stage of an experiment and that when rapid growth occurred, the granules had a pore saturation was around 0.85. This value was slightly lower than unity, which is most likely due to trapped air bubbles. (C) 2002 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg+Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca+Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti–rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# ≤ 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous paper, Hoornaert et al. (Powder Technol. 96 (1998); 116-128) presented data from granulation experiments performed in a 50 L Lodige high shear mixer. In this study that same data was simulated with a population balance model. Based on an analysis of the experimental data, the granulation process was divided into three separate stages: nucleation, induction, and coalescence growth. These three stages were then simulated separately, with promising results. it is possible to derive a kernel that fit both the induction and the coalescence growth stage. Modeling the nucleation stage proved to be more challenging due to the complex mechanism of nucleus formation. From this work some recommendations are made for the improvement of this type of model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip. The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms. The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms. The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again. (C) 2003 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.