56 resultados para CHLOROPHYLL FLUORESCENCE
em University of Queensland eSpace - Australia
Resumo:
Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A new type of dual-channel PAM chlorophyll fluorometer has been developed, which is specialised in the detection of extremely small differences in photosynthetic activity in algae or thylakoids suspensions. In conjunction with standardised algae cultures or isolated thylakoids, the new device provides an ultrasensitive biotest system for detection of toxic substances in water samples. In this report, major features of the new device are outlined and examples of its performance are presented using suspensions of Phaeodactylum tricornutum (diatoms) and of freeze-dried thylakoids of Lactuca sativa (salad). Investigated and reference samples are exposed to the same actinic intensity of pulse-modulated measuring light. The quantum yields are assessed by the saturation pulse method. Clock-triggered repetitive measurements of quantum yield typically display a standard deviation of 0.1%, corresponding to the inhibition induced by 0.02 mug diuron l(-1). Hence, for diuron or compounds with similar toxicity, the detection limit is well below the 0.1 mug l(-1) defined as the limit for the presence of a single toxic substance in water by the European Commission drinking water regulation. The amounts of water and biotest material required for analysis are very small, as a single assay involves two 1 ml samples, each containing ca. 0.5 mug chlorophyll. Both with Phaeodactylum and thylakoids the relationship between inhibition and diuron concentration is strictly linear up to 10% inhibition, with very similar slopes. Apparent inhibition depends on the actinic effect of the measuring light, showing optima at 6 and 4 mumol quanta m(-2) s(-1) with Phaeodactylum and thylakoids, respectively.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
Photoinhibition, as measured by the dark-adapted chlorophyll a fluorescence ratio F-v/F-m, was assessed in Syzygium moorei, a species with dark green juvenile leaves, Syzygium corynanthum, which has light green juvenile leaves, and two species with pink-red juvenile leaves (Syzygium wilsonii and Syzygium luehmannii). All plants were glasshouse-grown (maximum PPFD 1500 mu mol m(-2) s(-1)) under optimum nutrition and water. When measured at midday, dark-adapted F-v/F-m ratios of juvenile leaves gradually increased in art species as percentage of full leaf expansion (% FLE) increased. Fluorescence measurement 3 h after sunset or pre-dawn also showed a developmental effect on F-v/F-m, with juvenile leaves of S, luehmannii and S. wilsonii showing much lower F-v/F-m at all stages of development. Dark-adapted F-v/F-m values in both juvenile and mature leaves generally never exceeded 0.8 at any stage in any of the species. Courses of F-v/F-m on sunny days showed greater diurnal photoinhibition in green juvenile (c, 50% FLE) leaves of S, moorei (24%) and S, corynanthum (36%) than in mature leaves of the previous flush in these species (<10%), Diurnal photoinhibition was statistically similar (18-24%) in pink-red juvenile and green mature leaves of S, luehmannii and S, wilsonii. Re-positioning juvenile leaves of S, wilsonii horizontally increased diurnal photoinhibition, Exposure of leaves to a standard mild photoinhibitory right treatment (30 min at 1000 mu mol m(-2) s(-1)) showed that juvenile leaves of air species had a lower percentage of high energy state quenching (qE) and a higher percentage of photoinhibitory quenching (ql) than mature leaves.
Resumo:
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.
Resumo:
Modulated chlorophyll fluorescence techniques were used to examine the effects of cyanide (NaCN) from cyanide fishing on photosynthesis of the symbiotic algae (zooxanthellae) located within the tissues of the zooxanthellate hard coral Plesiastrea versipora. Incubating corals for 3 h in a cyanide concentration of >10(-5) M NaCN under a saturating light intensity (photosynthetically active radiation [PAR] intensity of 250 mu mol quanta m(-2) s(-1)) caused a long-term decrease in the ratio of variable to maximal fluorescence (dark-adapted F-v/F-m). The effect of cyanide on dark-adapted F-v/F-m was Light dependent; thus F-v/F-m only decreased in corals exposed to 10(-4) M NaCN for 3 h under PAR of 250 mu mol quanta m(-2) s(-1). In corals where dark-adapted F-v/F-m was significantly lowered by cyanide exposure, we observed significant loss of zooxanthellae from the tissues. causing the corals to discolour (bleach). To further examine the light-dependent effect of cyanide and its relation to loss of zooxanthellae, corals were exposed to 10-4 M NaCN or seawater only (control), either in darkness or under 250 mu mol quanta m(-2) s(-1). ill significant decrease in dark-adapted F-v/F-m and loss of zooxanthellae only occurred in corals exposed to cyanide in the light. These results suggest cyanide causes the dissociation of the symbiosis (bleaching) by affecting photosynthesis of the zooxanthellae. Quenching analysis using the saturation-pulse technique revealed the development of high levels of non-photochemical quenching in cyanide-exposed coral. This result is consistent with the known property of cyanide as an inhibitor of the dark reactions of the Calvin cycle, specifically as an inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Therefore, chronic photoinhibition and an impairment of photosynthesis of zooxanthellae provides an important 'signal' to examine the environmental effects of cyanide fishing during controlled releases in situ.
Resumo:
Pulse-amplitude-modulation fluorometry and oxygen respirometry were used to investigate diel photosynthetic responses by symbiotic dinoflagellates to light levels in summer and winter on a high latitude coral reef. The symbiotic dinoflagellates from 2 species of reef-building coral (Porites cylindrica and Stylophora pistillata) showed photoinhibitory decreases in the ratio of variable (F-v) to maximal (F-m) fluorescence (F-v/F-m) as early as 09:00 h on both summer and winter days on the reefs associated with One Tree Island (23 degrees 30' S, 152 degrees 06' E; Great Barrier Reef, Australia). This was due to decreases in maximum, F-m, and to a smaller extent minimum, F-0, chlorophyll fluorescence. Complete recovery took 4 to 6 h and began to occur as soon as light levels fell each day. Chlorophyll fluorescence quenching analysis of corals measured during the early afternoon revealed classic regulation of photosystem II (PSII) efficiency through non-photochemical quenching (NPQ). These results appear to be similar to data collected for other algae and higher plants, suggesting involvement of the xanthophyll cycle of symbiotic dinoflagellates in regulating the quantum efficiency of PSII. The ability of symbiotic dinoflagellates to develop significant NPQ, however, depended strongly on when the symbiotic dinoflagellates were studied. Whereas symbiotic dinoflagellates from corals in the early afternoon showed a significant capacity to regulate the efficiency of PSII using NPQ, those sampled before sunrise had a slower and much reduced capacity, suggesting that elements of the xanthophyll cycle are suppressed prior to sunrise. A second major finding of this study is that the quantum efficiency of PSII in symbiotic dinoflagellates is strongly diurnal, and is as much as 50% lower just prior to sunrise than later in the day. When combined with oxygen flux data, these results indicate that a greater portion of the electron transport occurring later in the day is likely to be due to the increases in the rate of carbon fixation by Rubisco or to higher flutes through the Mehler-Ascorbate-Peroxidase (MAP) cycle.
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
Tolerance of desiccation was examined in three species of moss, Grimmia antarctici Card., Ceratodon purpureus (Hedw.) Brid. and Bryum pseudotriquetrum (Hedw.) Gaertn., Meyer et Scherb. collected from two sites of contrasting water availability in the Windmill Islands, continental Antarctica. Physiological tolerance to desiccation was measured using chlorophyll fluorescence in plugs of moss during natural drying in the laboratory. Differences in relative water content, rate of drying and the response of photosynthesis to desiccation were observed among the three species and between sites. Of the three species studied, G. antarctici showed the lowest capacity to sustain photosynthetic processes during desiccation, B. pseudotriquetrum had an intermediate response and showed the greatest plasticity and C. purpureus showed the greatest capacity to sustain photosynthesis during desiccation. These results fit well with the known distribution of the three species with G. antarctici being limited to relatively wet sites, C. purpureus being common in the driest sites and B. pseudotriquetrum showing a wide distribution between these two extremes. Levels of soluble carbohydrates were also measured in these samples following desiccation and these indicate the presence of stachyose, an oligosaccharide known to be important in desiccation tolerance in seeds, in B. pseudotriquetrum. Both gross morphology and carbohydrate content are likely to contribute to differences in desiccation tolerance of the moss species. These results indicate that if the Casey region continues to dry out, as a result of local geological uplifting or global climate change, we would expect to see not only reductions in the moss community but also changes in community composition. G. antarctici is likely to become more limited in distribution as C. purpureus and B. pseudotriquetrum expand into drying areas.
Resumo:
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll-cycle pigments and the photosynthetic light use efficiency, F-v/F-m, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red-edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.
Resumo:
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.