19 resultados para CHEMICAL STRUCTURES
em University of Queensland eSpace - Australia
Resumo:
The radiation chemistry of poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) with a TFE mole fraction of 0.90 has been studied under vacuum using Co-60 gamma-radiation over a range of temperatures and absorbed doses. The radiolysis temperatures were 300, 363, 423, 523 and 543 K. New structure formation in the copolymers was analysed by solid-state F-19 NMR spectroscopy. The new structures formed in the copolymers have been identified and the G-values for the formation of new chemical structures have been investigated at 363 and 523 K. These two temperatures are just above and just below the polymer T-g and T-m, respectively. At the lower temperature, there was no evidence for any chain branching and an estimate of G(S) of 1.0 was obtained. A value of G(S) of 1.3 and a minimum value of G(X)(Y) of 1.3 were obtained at 523 K. (C) 2003 Society of Chemical Industry.
Resumo:
Spectroscopic studies of pheomelanin and its constituents have been sparse. These data present what is by far the most complete description of the fluorescence characteristics of synthetic pheomelanin. Emission spectra between 260 and 600 nm were acquired,for excitation wavelengths between 250 and 500 nm at 1-nm intervals. A quantum yield map is also presented, correcting the fluorescence intensities for differences in species concentration and molar absorptivity. These fluorescence features exhibit interesting similarities and differences to eumelanin, and these data are interpreted with respect to possible chemical structures. Overall, these data suggest that pheomelanin oligomers may be more tightly coupled than those of eumelanin. Finally, the quantum yield is shown to be on the order of 10(-4) and exhibit a complex dependence on excitation energy, varying by a factor of 4 across the energies employed here. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Ultem irradiated up to 10.0 MGy has been analysed using C-13, H-1 and D-2 proton-carbon and proton-proton correlation NMR spectroscopy to shed light on the formation of new structures. Chemical shifts and correlation data were used to determine the structure or partial structures of several new components. The spectra indicated the presence of new groups and structures involving the isopropylidene group, the imide ring, and hydrogen-abstraction reactions. Possible pathways for formation of the new structures are proposed and the G-values for their formation have been estimated. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Copper(II) bromide and chloride complexes of the new heptadentate ligand 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L) have been prepared. For the bromide complexes, chains of novel, approximately C-2-symmetric, chiral [Cu-2(L)Br-2](2+) 'wedge-shaped' tectons are found. The links between the dicopper tectons and the overall chirality and packing of the chains are dictated by the bromide ion content, not the counter anion. In contrast, the chloride complexes exhibit linked asymmetric [Cu-2(L)Cl-3](+) tectons with distinct N3CuCl2 and N4CuCl2 centres in the solid. The overall structures of the dicopper bromide and chloride units persist in solution irrespective of the halide. The redox chemistry of the various species is also described.
Resumo:
Peptidyl privileged structures have been widely used by many groups to discover biologically active molecules. In this context, privileged substructures are used as hydrophobic anchors, to which peptide functionality is appended to gain specificity. Utilization of this concept has led to the discovery of many different active compounds at a wide range of biological receptors. A synthetic approach to these compounds has been developed on a safety-catch linker that allows rapid preparation of large libraries of these molecules. Importantly, amide bond formation/cleavage through treatment with amines is the final step; it is a linker strategy that allows significant diversification to be easily incorporated, and it only requires the inclusion of an amide bond. In addition, chemistry has been developed that permits the urea moiety to be inserted at the N-terminus of the peptide, allowing the same set of amines (either privileged substructures or amino acid analogues) to be used at both the N- and C-termini of the molecule. To show the robustness of this approach, a small library of peptidyl privileged structures were synthesized, illustrating that large combinatorial libraries can be synthesized using these technologies.
Resumo:
New organometallic tin(IV) complexes of the empirical formula Sn(NNS)Ph2Cl (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by IR, electronic, I H NMR and ES mass spectroscopic techniques. The molecular structures of the 2-quinolinecarboxaldehyde Schiff base of S-methyldithiocarbazate (Hqaldsme) and its diphenyltin(IV) complex, Sn(qaldsme)Ph2Cl, have been determined by X-ray diffraction. In the solid state, the ligand remains as the thione tautomer in which the dithiocarbazate chain adopts an E,E configuration and is almost coplanar with the quinoline ring. The Sn(qaldsme)Ph2Cl complex crystallizes in two distinctly different conformationally isomeric forms, each having the same space group but different lattice parameters. X-ray analysis shows that in each polymorph, the tin atom adopts a distorted octahedral geometry with the Schiff base coordinated to it as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The two phenyl groups occupy axial positions and the chloride ligand occupies the sixth coordination position of the tin atom. The deprotonated ligand adopts an E,E,Z configuration in the complex. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing alpha,alpha-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)](2) (ONNO2- = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)](2), but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. (c) 2005 Published by Elsevier B.V.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.
Resumo:
The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
Resumo:
We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid ( DHICA) - and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers ( possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations ( leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems