78 resultados para CELLULAR COMPOSITION

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2GLUT4- Tg) mice were studied. GLUT4 amount was reduced by 80 - 95% in aP2-GLUT4-/- adipocytes and increased similar to10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase ( IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2GLUT4- Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Concerns of a decrease in physical activity levels (PALs) of children and a concurrent increase in childhood obesity exist worldwide. The exact relation between these two parameters however has as yet to be fully defined in children. Objective: This study examined the relation in 47 children, aged 5–10.5 y (mean age 8.4plusminus0.9 y) between habitual physical activity, minutes spent in moderate, vigorous and hard intensity activity and body composition parameters. Design: Total energy expenditure (TEE) was calculated using the doubly labelled water technique and basal metabolic rate (BMR) was predicted from Schofield's equations. PAL was determined by PAL=TEE/BMR. Time spent in moderate, vigorous and hard intensity activity was determined by accelerometry, using the Tritrac-R3D. Body fatness and body mass index (BMI) were used as the two measures of body composition. Results: Body fat and BMI were significantly inversely correlated with PAL (r=-0.43, P=0.002 and r=-0.45, P=0.001). Times spent in vigorous activity and hard activity were significantly correlated to percentage body fat (r=-0.44, P=0.004 and r=-0.39, P=0.014), but not BMI. Children who were in the top tertiles for both vigorous activity and hard activity had significantly lower body fat percentages than those in the middle and lowest tertiles. Moderate intensity activity was not correlated with measures of body composition. Conclusions: As well as showing a significant relation between PAL and body composition, these data intimate that there may be a threshold of intensity of physical activity that is influential on body fatness. In light of world trends showing increasing childhood obesity, this study supports the need to further investigate the importance of physical activity for children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanism of how insects recognize intruding microorganisms and parasites and distinguish them from own body structures is not well known. We explored evolutionary adaptations in an insect parasitoid host interaction to identify components that interfere with the recognition of foreign objects and cellular encapsulation. Because some parasitoids provide protection for the developing wasp in the absence of an overt suppression of the insect host defense, we analyzed the surface of eggs and symbiotic viruses for protective properties. Here we report on the molecular cloning of a 32-kDa protein (Crp32) that is one of the major protective components. It is produced in the calyx cells of the female wasp ovaries and attached to the surface of the egg and other particles including polydnaviruses. The recombinant protein confers protection to coated objects in a cellular encapsulation assay suggesting that a layer of Crp32 may prevent cellular encapsulation reactions by a local inactivation of the host defense system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sorption by coal is closely related to its physical and chemical properties, which are, in turn, governed by coal type and rank. The role of coal type (sensu maceral composition) is not fully established but it is clear that coal type may affect both adsorption capacity and desorption rate. Adsorption capacity is closely related to micropore (pores <2 nm) development, which is rank and maceral dependent. Adsorption isotherms indicate that in most cases bright (vitrinite-rich) coals have a greater adsorption capacity than their dull (often inertinite-rich) equivalents. However, no differences, or even the opposing trend, may be observed in relation to coal type. Desorption rate investigations have been performed using selected bright and dull coal samples in a high pressure microbalance. Interpretation of results using unipore spherical and bidisperse pore models indicate the importance of the pore structure. Bright, vitrinite-rich coals usually have the slowest desorption rates which is associated with their highly microporous structure. However, rapid desorption in bright coals may be related to development of extensive, unmineralised fracture systems. Both macro-and micro-pore systems are implicated in the more rapidly desorbing dull coals. Some dull, inertinite-rich coals may rapidly desorb due to a predominance of large, open cell lumina. Mineral matter is essentially nonadsorbent to coal gases and acts as a simple diluent. However, mineral-rich coals may be associated with more rapid desorption. Coal rank and type (maceral composition) per se do not appear to be the critical factors in controlling gas sorption, but rather the influence they exert over pore structure development. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropical marine sponge Dysidea herbacea (Keller) contains the filamentous unicellular cyanobacterium Oscillatoria spongeliae (Schulze) Hauck as an endosymbiont, plus numerous bacteria, both intracellular and extracellular. Archaeocytes and choanocytes are the major sponge cell types present. Density gradient centrifugation of glutaraldehyde-fixed cells with Percoll as the support medium has been used to separate the cyanobacterial symbiont from the sponge cells on the basis of their differing densities. The protocol also has the advantage of separating broken from intact cells of O. spongeliae. The lighter cell preparations contain archaeocytes and choanocytes together with damaged cyanobacterial cells, whereas heavier cell preparations contain intact cyanobacterial cells, with less than 1% contamination by sponge cells. Gas chromatography/mass spectrometry analysis has revealed that the terpene spirodysin is concentrated in preparations containing archaeocytes and choanocytes, whereas nuclear magnetic resonance analysis of the symbiont cell preparations has shown that they usually contain the chlorinated diketopiperazines, dihydrodysamide C and didechlorodihydrodysamide C, which are the characteristic metabolites of the sponge/symbiont association. However, one symbiont preparation, partitioned by a second Percoll gradient, has been found to be devoid of chlorinated diketopiperazines. The capability to synthesize secondary metabolites may depend on the physiological state of the symbiont; alternatively, there may be two closely related cyanobacterial strains within the sponge tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light-microscopic and electron-microscopic studies of the tropical marine sponge Haliclona sp. (Or der: Haplosclerida Family: Haliclonidae) from Heron Island, Great Barrier Reef, have revealed that this sponge is characterized by the presence of dinoflagellates and by nematocysts. The dinoflagellates are 7-10 mu m in size, intracellular, and contain a pyrenoid with a single stalk, whereas the single chloroplast is branched, curved, and lacks grana. Mitochondria are present, and the nucleus is oval and has distinct chromosomal structure. The dinoflagellates are morphologically similar to Symbiodinium microadriaticum, the common intracellular symbiont of corals, although more detailed biochemical and molecular studies are required to provide a precise taxonomic assignment. The major sponge cell types found in Haliclona sp, are spongocytes, choanocytes, and archaeocytes; groups of dinoflagellates are enclosed within large vacuoles in the archaeocytes. The occurrence of dinoflagellates in marine sponges has previously been thought to be restricted to a small group of sponges including the excavating hadromerid sponges; the dinoflagellates in these sponges are usually referred to as symbionts. The role of the dinoflagellates present in Haliclona sp. as a genuine symbiotic partner requires experimental investigation. The sponge grows on coral substrates, from which it may acquire the nematocysts, and shows features, such as mucus production, which are typical of some excavating sponges. The cytotoxic alkaloids, haliclonacyclamines A and B, associated with Haliclona sp. are shown by Percoll density gradient fractionation to be localized within the sponge cells rather than the dinoflagellates. The ability to synthesize bioactive compounds such as the haliclonacyclamines may help Haliclona sp. to preserve its remarkable ecological niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the growth-regulating action of estrogen on vascular smooth muscle cells (SMC), effects of beta-17-estradiol (beta-E-2) on phenotypic modulation and proliferation of rabbit aortic SMC were observed in vitro. At 10(-8) M, beta-E-2 significantly slowed the decrease in volume fraction of myofilaments (V(v)myo) of freshly dispersed SMCs in primary culture, indicating an inhibitory effect of beta-E-2 On spontaneous phenotypic modulation of SMC from a contractile to a synthetic phenotype. Freshly dispersed SMCs treated with beta-E-2 also had a relatively longer quiescent phase than control cells before intense proliferation occurred. This was in contrast to SMCs in passage 2-3 (synthetic state), where beta-E-2-treated cells replicated significantly faster than untreated cells. beta-E-2 also markedly enhanced the serum-induced DNA synthesis of synthetic SMCs in a concentration-dependent manner within physiological range (10(-10) to 10-8 M). These findings indicate that the growth-regulating effect of estrogen on vascular SMC is dependent on the cell's phenotypic stare. It delays the cell cycle re-entry of the contractile SMCs by retarding their phenotypic modulation however, once cells have modulated to the synthetic phenotype, it promotes their replication. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveys of commercial soybean fields, disease nurseries, and trial plots of soybean were conducted throughout eastern Australia between 1979 and 1996, and 694 isolates of Phytophthora sojae were collected and classified into races. Fourteen races, 1, 2, 4, 10, 15, and 25, and eight new races, 46 to 53, were identified, but only races 1, 4, 15, 25, 46, and 53 were found in commercial fields. Races 1 and 15 were the only races found in commercial fields in the soybean-growing areas of Australia up until 1989, with race 1 being the dominant race. Race 4 was found in central New South Wales in 1989 on cultivars with the Rps1a gene, and it is now the dominant race in central and southern New South Wales. Races 46 and 53 have only been found once, in southern New South Wales, and race 25 was identified in the same region in 1994 on a cultivar with the Rps1k gene. Only races 1 and 15 have been found in the northern soybean-growing regions, with the latter dominating, which coincides with the widespread use of cultivars with the Rps2 gene. Changes in the race structure of the P. sojae population from commercial fields in Australia follow the deployment of specific resistance genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New techniques in air-displacement plethysmography seem to have overcome many of the previous problems of poor reproducibility and validity. These have made body-density measurements available to a larger range of individuals, including children, elderly and sick patients who often have difficulties in being submerged underwater in hydrodensitometry systems. The BOD POD air-displacement system (BOD POD body composition system; Life Measurement Instruments, Concord, CA, USA) is more precise than hydrodensitometry, is simple and rapid to operate (approximately 1 min measurements) and the results agree closely with those of hydrodensitometry (e.g. +/-3.4% for estimation of body fat). Body line scanners employing the principles of three-dimensional photography are potentially able to measure the surface area and volume of the body and its segments even more rapidly (approximately 10 s), but the validity of the measurements needs to be established. Advances in i.r. spectroscopy and mathematical modelling for calculating the area under the curve have improved precision for measuring enrichment of (H2O)-H-2 in studies of water dilution (CV 0.1-0.9% within the range of 400-1000 mu l/l) in saliva, plasma and urine. The technique is rapid and compares closely with mass spectrometry (bias 1 (SD 2) %). Advances in bedside bioelectrical-impedance techniques are making possible potential measurements of skinfold thicknesses and limb muscle mass electronically. Preliminary results suggest that the electronic method is more reproducible (intra-and inter-individual reproducibility for measuring skinfold thicknesses) and associated with less bias (+ 12%), than anthropometry (+ 40%). In addition to these selected examples, the 'mobility' or transfer of reference methods between centres has made the distinction between reference and bedside or field techniques less distinct than in the past.