45 resultados para CDF,spray,multicomponente,film,boiling,Delta,Leidenfrost
em University of Queensland eSpace - Australia
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to detect petroleum-derived spray oils (PDSOs) in citrus seedlings and trees. The NMR spectrum of the phantom containing 10% (v/v) of a nC24 agricultural mineral oil (AMO) showed the resonance of the water protons at delta = 5 ppm, while the resonance of the oil protons at delta = 1.3 to 1.7 ppm. The peak resolution and the chemical shift difference of more than 3.3 ppm between water and oil protons effectively differentiated water and the oil. Chemical shift selective imaging (CSSI) was performed to localize the AMO within the stems of Citrus trifoliata L. seedlings after the application of a 4% (v/v) spray. The chemical shift selective images of the oil were acquired by excitation at delta = 1.5 ppm by averaging over 400 transients in each phase-encoding step. Oil was mainly detected in the outer cortex of stems within 10 d of spray application; some oil was also observed in the inner vascular bundle and pith of the stems at this point. CSSI was also applied to investigate the persistence of oil deposits in sprayed mature Washington navel orange (Citrus x aurantium L.) trees in an orchard. The trees were treated with either fourteen 0.25%, fourteen 0.5%, four 1.75%, or single 7% sprays of a nC23 horticultural mineral oil (HMO) 12 to 16 months before examination of plant tissues by CSSI, and were still showing symptoms of chronic phytotoxicity largely manifested as reduced yield. The oil deposits were detected in stems of sprayed flushes and unsprayed flushes produced 4 to 5 months after the last spray was applied, suggesting a potential movement of the oil via phloem and a correlation of the persistence of oil deposit in plants and the phytotoxicity. The results demonstrate that MRI is an effective method to probe the uptake and localization of PDSOs and other xenobiotics in vivo in plants noninvasively and nondestructively.
Resumo:
A kinetic theory based Navier-Stokes solver has been implemented on a parallel supercomputer (Intel iPSC Touchstone Delta) to study the leeward flowfield of a blunt nosed delta wing at 30-deg incidence at hypersonic speeds (similar to the proposed HERMES aerospace plane). Computational results are presented for a series of grids for both inviscid and laminar viscous flows at Reynolds numbers of 225,000 and 2.25 million. In addition, comparisons are made between the present and two independent calculations of the some flows (by L. LeToullec and P. Guillen, and S. Menne) which were presented at the Workshop on Hypersonic Flows for Re-entry Problems, Antibes, France, 1991.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
Objective To determine the efficacy of zeta-cypermethrin in controlling buffalo fly (Haematobia irritans exigua). Design Five field trials in northern and central Queensland. Procedure Zeta-cypermethrin pour-on at 2.5 mg/kg, spray at 62.5 ppm, deltamethrin pour-on and pour-on vehicle were applied to groups of 20 cattle. Buffalo fly counts were conducted three times before treatment and 3, 7, 14, 21, 28 and 35 days after treatment. Results In central Queensland where synthetic pyrethroid resistance in buffalo fly populations was rare, 2.5 mg/kg of zeta-cypermethrin pour-on gave good control of buffalo fly for 4 weeks and was better than a deltamethrin product. A zeta-cypermethrin spray used at 62.5 ppm gave 14 days control. In far-north Queensland where resistance to synthetic pyrethroids and heavy rain was common, the maximum period of efficacy of zeta-cypermethrin pour-on was reduced to 2 weeks. Conclusion In areas where there is low resistance to synthetic pyrethroids among buffalo flies, zeta-cypermethrin pour-on can be expected to give good control for 4 weeks.
Resumo:
The adsorbed film in small cylindrical mesopores is studied by using MCM-41 samples of uniform cylindrical channels as model systems. It is found that at a given relative pressure, the smaller the pore radius, the thicker the adsorbed film is, as postulated by Broekhoff and De Beer. Thermodynamics analysis established that the stability of the adsorbed film is determined by interface curvature and the potential of interaction between adsorbate and adsorbent. A semiempirical equation is proposed to describe the state of stable adsorbed films in cylindrical mesopores. It is also shown to be useful in calculations of pore size distributions of mesoporous solids.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
The N-15 natural abundance (delta N-15) of ecosystem samples reflects measures of water availability
Resumo:
We assembled a globally-derived data set for site-averaged foliar delta(15)N, the delta(15)N of whole surface mineral soil and corresponding site factors (mean annual rainfall and temperature, latitude, altitude and soil pH). The delta(15)N of whole soil was related to all of the site variables (including foliar delta(15)N) except altitude and, when regressed on latitude and rainfall, provided the best model of these data, accounting for 49% of the variation in whole soil delta(15)N. As single linear regressions, site-averaged foliar delta(15)N was more strongly related to rainfall than was whole soil delta(15)N. A smaller data set showed similar, negative correlations between whole soil delta(15)N, site-averaged foliar delta(15)N and soil moisture variations during a single growing season. The negative correlation between water availability (measured here by rainfall and temperature) and soil or plant delta(15)N fails at the landscape scale, where wet spots are delta(15)N-enriched relative to their drier surroundings. Here we present global and seasonal data, postulate a proximate mechanism for the overall relationship between water availability and ecosystem delta(15)N and, newly, a mechanism accounting for the highly delta(15)N-depleted values found in the foliage and soils of many wet/cold ecosystems. These hypotheses are complemented by documentation of the present gaps in knowledge, suggesting lines of research which will provide new insights into terrestrial N-cycling. Our conclusions are consistent with those of Austin and Vitousek (1998) that foliar (and soil) delta(15)N appear to be related to the residence time of whole ecosystem N.
Resumo:
This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.
Resumo:
The depletion of zeta-cypermethrin residues in bovine tissues and milk was studied. Beef cattle were treated three times at 3-week intervals with 1 ml 10 kg(-1) body weight of a 25 g litre(-1) or 50 g litre(-1) pour-on formulation (2.5 and 5.0 mg zeta-cypermethrin kg(-1) body weight) or 100 mg kg(-1) spray to simulate a likely worst-case treatment regime. Friesian and Jersey dairy cows were treated once with 2.5 mg zeta-cypermethrin kg(-1) in a pour-on formulation. Muscle, liver and kidney residue concentrations were generally less than the limit of detection (LOD = 0.01 mg kg(-1)). Residues in renal-fat and back-fat samples from animals treated with 2.5 mg kg(-1) all exceeded the limit of quantitation (LOQ = 0.05 mg kg(-1)), peaking at 10 days after treatment. Only two of five kidney fat samples were above the LOQ after 34 days, but none of the back-fat samples exceeded the LOQ at 28 days after treatment. Following spray treatments, fat residues were detectable in some animals but were below the LOQ at all sampling intervals. Zeta-cypermethrin was quantifiable (LOQ = 0.01 mg kg(-1)) in only one whole-milk sample from the Friesian cows (0.015 mg kg(-1), 2 days after treatment). In whole milk from Jersey cows, the mean concentration of zeta-cypermethrin peaked 1 day after treatment, at 0.015 mg kg(-1), and the highest individual sample concentration was 0.025 mg kg(-1) at 3 days after treatment. Residues in milk were not quantifiable beginning 4 days after treatment. The mean concentrations of zeta-cypermethrin in milk fat from Friesian and Jersey cows peaked two days after treatment at 0.197 mg kg(-1) and 0.377 mg kg(-1), respectively, and the highest individual sample concentrations were 2 days after treatment at 0.47 mg kg(-1) and 0.98 mg kg(-1), respectively. (C) 2001 Society of Chemical Industry.
Resumo:
To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and delta(18)O were generated from a coral growing at Rarotonga (21.5degreesS, 159.5degreesW). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral delta(18)O is a function of both SST and seawater delta(18)O composition (delta(18)O(sw)). Here, we focus on extracting the delta(18)O(sw) signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral delta(18)O is a function of both SST and delta(18)O(sw). This method separates the effects of delta(18)O(sw) from SST by breaking the instantaneous changes of coral delta(18)O into separate contributions by instantaneous SST and delta(18)O(sw) changes, respectively. The results show that on average delta(18)O(sw) at Rarotonga explains similar to39% of the variance in delta(18)O and that variations in SST explains the remaining similar to61% of delta(18)O variance. Reconstructed delta(18)O(sw) shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The delta(18)O(sw) also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed delta(18)O(sw) and salinity makes it possible to use the reconstructed delta(18)O(sw) to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral delta(18)O and delta(18)O(sw) at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific. Copyright (C) 2002 Elsevier Science Ltd.
Resumo:
Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.