15 resultados para CATALASE

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defenses against oxidative stress are crucial for the survival of the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. An Mn(II) uptake system is involved in manganese (Mn)-dependent resistance to superoxide radicals in N. gonorrhoeae. Here, we show that accumulation of Mn also confers resistance to hydrogen peroxide killing via a catalase-independent mechanism. An mntC mutant of N. meningitidis is susceptible to oxidative killing, but supplementation of growth media with Mn does not enhance the organism's resistance to oxidative killing. N. meningitidis is able to grow in the presence of millimolar levels of Mn ion, in contrast to N. gonorrhoeae, whose growth is retarded at Mn concentrations >100 mumol/L, indicating that Mn homeostasis in the 2 species is probably quite different. N. meningitidis superoxide dismutase B plays a role in protection against oxidative killing. However, a sodC mutant of N. meningitidis is no more sensitive to oxidative killing than is the wild type. A cytochrome c peroxidase (Ccp) is present in N. gonorrhoeae but not in N. meningitidis. Investigations of a ccp mutant revealed a role for Ccp in protection against hydrogen peroxide killing. These differences in oxidative defenses in the pathogenic Neisseria are most likely a result of their localization in different ecological niches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 The aim was to test the hypothesis that nitric oxide ( NO) donor drugs can inhibit the 5-hydroxytryptamine (5-HT) transporter, SERT. 2 The NO donors, MAHMA/NO ( a NONOate; (Z)-1-[N-methyl-N-[6-(N-methylammoniohexyl)amino]]diazen- 1-ium-1,2-diolate), SIN-1 ( a sydnonimine; 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride), FK409 ( an oxime; (+/-)-(4-ethyl-2E-(hydroxyimino)-5-nitro-3E-hexenamide)) and peroxynitrite, but not Angeli's salt ( source of nitroxyl anion) or sodium nitrite, caused concentration-dependent inhibition of the specific uptake of [H-3]- 5-HT in COS-7 cells expressing human SERT. 3 Superoxide dismutase (150 U ml(-1)) plus catalase ( 1200 U ml(-1)), used to remove superoxide and hence prevent peroxynitrite formation, prevented the inhibitory effect of SIN-1 ( which generates superoxide) but not of MAHMA/NO or FK409. 4 The inhibitory effects of the NO donors were not affected by the free radical scavenger, hydroxocobalamin (1 mM) or the guanylate cyclase inhibitor, ODQ (1H-[ 1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one; 3 muM). 5 L-Cysteine ( 1 mM; source of excess thiol residues) abolished or markedly reduced the inhibitory effects of MAHMA/NO, SIN-1, FK409 and peroxynitrite. 6 It is concluded that inhibition of SERT by the NO donors cannot be attributed exclusively to NO free radical nor to nitroxyl anion. It does not involve guanosine-3',5'-cyclic monophosphate, but may involve nitrosation of cysteine residues on the SERT protein. Peroxynitrite mediates the effect of SIN-1, but not the other drugs. 7 Data in mice with hypoxic pulmonary hypertension suggest that SERT inhibitors may attenuate pulmonary vascular remodelling. Thus, NO donors may be useful in pulmonary hypertension, not only as vasodilators, but also because they inhibit SERT, provided they display this effect in vivo at appropriate doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mild degree of undernutrition brought about by restricting the amount of food in the diet is known to alter the life span of an animal. It has been hypothesised that this may be related to the effects of undernutrition on an animals anti-oxidant defense system. We have therefore, used real-time PCR (rt-PCR) techniques to determine the levels of mRNA expression for manganese superoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/ZnSOD), glutathione peroxidase 1 (GPx 1) and catalase in the brains of Quackenbush mice undernourished from conception until 21-post-natal days of age. It was found that 21- and 61-day-old undernourished mice had a deficit in the expression of Cu/ZnSOD in both the cerebellum and forebrain regions compared to age-matched controls. The expression of MnSOD was found to be greater in the cerebellum, but not the forebrain region, of 21-day-old undernourished mice. There were no significant differences in the expression of GPx 1 and catalase between control and undernourished or previously undernourished mice. Our results confirm that undernutrition during the early life of a mouse may disrupt some of the enzymes involved in the anti-oxidant defense systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclosporine A-treated transplant recipients develop pronounced cardiovascular disease and have increased oxidative stress and altered antioxidant capacity in erythrocytes and plasma. These experiments investigated the time-course of cyclosporine A-induced changes to redox balance in plasma and erythrocytes. Rats were randomly assigned to either a control or cyclosporine A-treated group. Treatment animals received 25 mg/kg of cyclosporine A via intraperitoneal injection for either 7 days or a single dose. Control rats were injected with the same volume of the vehicle. Three hours after the final injections, plasma was analysed for total antioxidant status, a-tocopherol, malondialdehyde, and creatinine. Erythrocytes were analysed for reduced glutathione (GSH), alpha-tocopherol, methaemoglobin, malondialdehyde, and the activities of superoxide dismutase, catalase, GSH peroxidase, and glucose-6-phosphate dehydrogenase (G6PD). Cyclosporine A administration for 7 days resulted in a significant increase (P < 0.05) in plasma malondialdehyde, methaemoglobin, and superoxide dismutase and catalase activities. There was a significant decrease (P < 0.05) in erythrocyte GSH concentration and G6PD activity in cyclosporine A animals. There were no significant differences (P > 0.05) between groups following a single dose of cyclosporine A in any of the measures. In summary, cyclosporine A alters erythrocyte redox balance after 7 days administration, but not after a single dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organ transplant recipients develop pronounced cardiovascular disease, and decreased antioxidant capacity in plasma and erythrocytes is associated with the pathogenesis of this disease. These experiments tested the hypothesis that the immunosuppressant cyclosporine A (CsA) alters erythrocyte redox balance and reduces plasma antioxidant capacity. Female Sprague-Dawley rats were randomly assigned to a control or CsA treated group. Treatment animals received 25 mg/kg/day of CsA via intraperitoneal injection for 18 days. Control rats were injected with the same volume of the vehicle. Three hours after the final CsA injection, rats were exsanguinated and plasma analysed for total antioxidant status (TAS), alpha-tocopherol, malondialdehyde (MDA), and creatinine. Erythrocytes were analysed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glucose-6-phosphate dehydrogenase (G6PD) activities, alpha-tocopherol, and MDA. CsA administration resulted in a significant (P < 0.05) decrease in plasma TAS and significant increases (P < 0.05) in plasma creatinine and MDA. Erythrocyte CAT was significantly (P < 0.05) increased in CsA treated rats compared to controls. There were no significant differences (P > 0.05) in erythrocyte SOD, GPX, G6PD, alpha-tocopherol or MDA between groups. In summary, CsA alters erythrocyte antioxidant defence and decreases plasma total antioxidant capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of dietary antioxidant supplementation with alpha-tocopherol and alpha-lipoic acid on cyclosporine A (cyclosporine)-induced alterations to erythrocyte and plasma redox balance. Rats were randomly assigned to either control, antioxidant (alpha-tocopherol 1000 IU/kg diet and alpha-lipoic acid 1.6 g/kg diet), cyclosporine (25 mg/kg/day), or cyclosporine + antioxidant treatments. Cyclosporine was administered for 7 days after an 8 week feeding period. Plasma was analysed for alpha-tocopherol, total antioxidant capacity, malondialdehyde, and creatinine. Erythrocytes were analysed for glutathione, methaemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Cyclosporine administration caused a significant decrease in superoxide dismutase activity (P < 0.05 control versus cyclosporine) and this was improved by antioxidant supplementation (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P < 0.05 control versus cyclosporine + antioxidant). Animals receiving cyclosporine and antioxidants showed significantly increased (P < 0.05) catalase activity compared to both groups not receiving cyclosporine. Cyclosporine administration induced significant increases in plasma malondialdehyde and creatinine concentration (P < 0.05 control versus cyclosporine). Antioxidant supplementation prevented the cyclosporine induced increase in plasma creatinine (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P > 0.05 control versus cyclosporine + antioxidant), however, supplementation did not alter the cyclosporine induced increase in plasma malondialdehyde concentration (P > 0.05 cyclosporine versus cyclosporine + antioxidant). Antioxidant supplementation resulted in significant increases (P < 0.05) in plasma and erythrocyte alpha-tocopherol in both of the supplemented groups compared to non-supplemented groups. In conclusion, dietary supplementation with alpha-tocopherol and alpha-lipoic acid enhanced the erythrocyte antioxidant defence and reduced nephrotoxicity in cyclosporine treated animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of dietary antioxidant supplementation with a-tocopherol and a-lipoic acid on cyclosporine-induced alterations to erythrocyte and plasma redox balance, and cyclosporine-induced endothelial and smooth muscle dysfunction. Rats were randomly assigned to either control, antioxidant, cyclosporine or cyclosporine + antioxidant treatments. Cyclosporine A was administered for 10 days after an 8-week feeding period. Plasma was analyzed for alpha-tocopherol, total antioxidant capacity, malondialdehyde and creatinine. Erythrocytes were analyzed for glutathione, methemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Vascular endothelial and smooth muscle function was determined in vitro. Antioxidant supplementation resulted in significant increases in erythrocyte a-tocopherol concentration and glutathione peroxidase activity in both of the antioxidant-supplemented groups. Cyclosporine administration caused significant decreases in glutathione concentration, methemoglobin concentration and superoxide dismutase activity. Antioxidant supplementation attenuated the cyclosporine-induced decrease in superoxide dismutase activity. Cyclosporine therapy impaired both endothelium-independent and -dependent relaxation of the thoracic aorta, and this was attenuated by antioxidant supplementation. In summary, dietary supplementation with alpha-tocopherol and alpha-lipoic acid attenuated the cyclosporine-induced decrease in erythrocyte superoxide dismutase activity and attenuated cyclosporine-induced vascular dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long (6- to 9-mo) bouts of estivation in green-striped burrowing frogs lead to 28% atrophy of cruralis oxidative fibers (P < 0.05) and some impairment of in vitro gastrocnemius endurance (P < 0.05) but no significant deficit in maximal twitch force production. These data suggest the preferential atrophy of oxidative fibers at a rate slower than, but comparable to, laboratory disuse models. We tested the hypothesis that the frog limits atrophy by modulating oxidative stress. We assayed various proteins at the transcript level and verified these results for antioxidant enzymes at the biochemical level. Transcript data for NADH ubiquinone oxidoreductase subunit 1 (71% downregulated, P < 0.05) and ATP synthase (67% downregulated, P < 0.05) are consistent with mitochondrial quiescence and reduced oxidant production. Meanwhile, uncoupling protein type 2 transcription (P < 0.31), which is thought to reduce mitochondrial leakage of reactive oxygen species, was maintained. Total antioxidant defense of water-soluble (22.3 +/- 1.7 and 23.8 +/- 1.5 mu M/mu g total protein in control and estivator, respectively, P = 0.53) and membrane-bound proteins (31.5 +/- 1.9 and 42.1 +/- 7.3 mu M/mu g total protein in control and estivator, respectively, P = 0.18) was maintained, equivalent to a bolstering of defense relative to oxygen insult. This probably decelerates muscle atrophy by preventing accumulation of oxidative damage in static protein reserves. Transcripts of the mitochondrially encoded antioxidant superoxide dismutase type 2 ( 67% downregulated, P < 0.05) paralleled mitochondrial activity, whereas nuclear-encoded catalase and glutathione peroxidase were maintained at control values (P = 0.42 and P = 0.231), suggesting a dissonance between mitochondrial and nuclear antioxidant expression. Pyruvate dehydrogenase kinase 4 transcription was fourfold lower in estivators (P = 0.11), implying that, in contrast to mammalian hibernators, this enzyme does not drive the combustion of lipids that helps spare hypometabolic muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation, Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426(T), 89(.)8% sequence similarity). In pure culture, the cells (1(.)5-2(.)0 mu m) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 degrees C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C-18: 1 omega 7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C-19: 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G + C content of the DNA is 42(.)9 mol% (for strain Gr1(T)). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1(T) and Gr10; 97(.)7 % identical) showed 71(.)5 % DNA-DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1(T) (=DSM 15528(T) =ATCC BAA-740(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In oligotrophic waters the light spectrum is mostly blue, and therefore the physiological and biochemical responses to blue light occurring in the coral tissue and in the symbiotic algae are important. Examination of the wavelength dependence of two free radical scavenger enzyme activity revealed an increase in activity in the blue light range (440-480 nm) compared to the red (640680 nm) in the full visible light (400-700 nm) range. These data show for the first time the relationship between the action spectra of photosynthesis and the activity of two main antioxidant enzymes in the symbiotic coral Favia favus. It was found that in the animal (host) the enzyme response to the spectral distribution of light was higher than that of the zooxanthellae, probably due to accumulation of free radicals within the host tissue. Furthermore, we found that the activity of these enzymes is affected in nature by the length of the day and night, and in the laboratory, by the duration of the illumination. Changes in the pigment concentrations were also observed in response to growth under the blue region and the whole PAR spectrum, while fluorescence measurements with the fast repetition rate fluorometer (FRRF) showed a decrease in the sigma cross section and a decrease in the quantum yield also in the blue part of the spectrum. These changes of scavenger enzymes activity, pigment concentration and fluorescence yield at different light spectra are vital in acclimatization and survival of corals in shallow water environments with high light radiation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.