2 resultados para CARDIAC DEFECTS

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To audit effective quality assurance methods to monitor outcomes following paediatric cardiac surgery at a single institution. Methods: All patients undergoing cardiac surgery from January 1996 to December 2001 were enrolled prospectively. Patients were stratified by complexity of surgical procedure into four groups, with Category 4 being the most complex procedure. Outcome measures included death, length of admission and morbidity from complications. Results: A total of 1815 patients underwent 1973 surgical procedures. Of these, 1447 (73.3%) were cardiopulmonary bypass procedures, and 543 (27.5%) were more complex (Category 3 and 4) procedures. Median patient age was 3.5 years (range, 1 day-20 years) and patient weight 15.0 kg (range, 900 g to 90 kg). Sixty-six patients (3.6%) died during the study period. Of the procedures in 1996, 22.7% were classified as complex compared with 29.2% of procedures in 2001. The annual surgical mortality ranged from 1.9-4.7% (P=0.20), and when mortality was adjusted for complexity of surgery, there was no significant yearly variation in the mortality rate (P=0.57). Analysis of individual surgeon's results showed no significant difference in the mortality rate by complexity of surgery performed (P=0.90). Mean ventilation times did not change significantly over time (P=0.79). The yearly incidence of significant neurological complications ranged from 0.6% to 4.5% and the incidence of arrhythmias from 4.2% to 8.0%. No difference was detected between the years. Conclusions: Stratifying complexity of surgery proved valuable in monitoring surgical outcomes and detecting differences in performance over time as large subgroups were created for analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.