6 resultados para CALICIVIRUS
em University of Queensland eSpace - Australia
Resumo:
A total of 2071 individual prey items were identified from 34 active and 55 inactive wedge-tailed eagle nests following the 1995, 1996 and 1997 breeding seasons. Overall, the eagle's diet was comparable to that reported in other studies within semi-arid regions, with rabbits, reptiles and macropods accounting for 47.8, 22.6 and 13.7% of prey items, respectively. In spring 1996 rabbit calicivirus moved into the study area, resulting in a 44-78% reduction in rabbit abundance (Sharp et al. 2001). An index was developed to enable the time since death for individual prey items to be approximated and a historical perspective of the eagle's diet to be constructed. Rabbits constituted 56-69% of dietary items collected during the pre-rabbit calicivirus disease (RCD) samples, but declined to 31% and 16% in the two post-RCD samples. A reciprocal trend was observed for the proportion of reptiles in the diet, which increased from 8-21% of pre-RCD dietary items to 49-54% after the advent of RCD. Similarly, the proportion of avian prey items was observed to increase in the post-RCD samples. These data suggested that prey switching may have occurred following the RCD epizootic. However, a lack of data on the relative abundances of reptiles and birds prevented an understanding of the eagle's functional responses to be developed and definitive conclusions to be drawn. Nevertheless, the eagles were observed to modify their diet to the change in rabbit densities by consuming larger quantities of native prey species.
Resumo:
Field collected flies were screened for the presence of rabbit haemorrhagic disease virus (RHDV) by applying reverse transcriptase PCR (RT-PCR) in which primers specific to the capsid protein of the virus were used. The virus was detected in flies from locations where rabbit haemorrhagic disease (RHD) was reported and also soon after the release of RHDV in a 'clean' area. Oral and/or anal excretions of flies (flyspots) were found to contain viable virus and oral inoculation of rabbits revealed that a single flyspot was able to cause RHD. We conclude that flyspots are a major potential source of the virus for oral or conjunctival transmission of the virus to rabbits. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Liver samples from rabbits killed by RHDV, collected from five States in Australia in 1996 and 1997 were analysed by RT-PCR. A 398 bp fragment of the capsid protein (VP60) gene was amplified by PCR and directly sequenced. The alignment of the nucleotide and amino acid sequences and their comparison with the original strain of the virus released in Australia indicated genetic changes after two years have been small with 98.2% to 100% identity. The constructed phylogenetic tree suggests slight differences in nucleotide substitutions in various States but there is no clear evidence of clustering of sequences according to their geographic origin. In practical terms, sequencing of viral RNA provides a means of testing the efficacy of further releases and subsequent spread of the virus if such a strategy is employed as a means of enhancing RHD as a biological control of the wild rabbit in Australia.
Resumo:
Epidemics of marine pathogens can spread at extremely rapid rates. For example, herpes virus spread through pilchard populations in Australia at a rate in excess of 10 000 km year(-1), and morbillivirus infections in seals and dolphins have spread at more than 3000 km year(-1). In terrestrial environments, only the epidemics of myxomatosis and calicivirus in Australian rabbits and West Nile Virus in birds in North America have rates of spread in excess of 1000 km year(-1). The rapid rates of spread of these epidemics has been attributed to flying insect vectors, but flying vectors have not been proposed for any marine pathogen. The most likely explanation for the relatively rapid spread of marine pathogens is the lack of barriers to dispersal in some parts of the ocean, and the potential for long-term survival of pathogens outside the host. These findings caution that pathogens may pose a particularly severe problem in the ocean. There is a need to develop epidemic models capable of generating these high rates of spread and obtain more estimates of disease spread rate.
Resumo:
A study was conducted to investigate the persistence of rabbit haemorrhagic disease virus (RHDV) in the environment. Virus was impregnated onto two carrier materials (cotton tape and bovine liver) and exposed to environmental conditions on pasture during autumn in New Zealand. Samples were collected after 1, 10, 44 and 91 days and the viability of the virus was determined by oral inoculation of susceptible 11- to 14-week-old New Zealand White rabbits. Evidence of RHDV infection was based on clinical and pathological signs and/or seroconversion to RHDV. Virus impregnated on cotton tape was viable at 10 days of exposure but not at 44 days, while in bovine liver it was still viable at 91 days. The results of this study suggest that RHDV in animal tissues such as rabbit carcasses can survive for at least 3 months in the field, while virus exposed directly to environmental conditions, such as dried excreted virus, is viable for a period of less than I month. Survival of RHDV in the tissues of dead animals could, therefore, provide a persistent reservoir of virus, which could initiate new outbreaks of disease after extended delays.
Resumo:
A longitudinal capture-mark-recapture study was conducted to determine the temporal dynamics of rabbit haemorrhagic disease (RHD) in a European rabbit (Oryctolagus cuniculus) population of low to moderate density on sand-hill country in the lower North Island of New Zealand. A combination of sampling ( trapping and radio-tracking) and diagnostic (cELISA, PCR and isotype ELISA) methods was employed to obtain data weekly from May 1998 until June 2001. Although rabbit haemorrhagic disease virus ( RHDV) infection was detected in the study population in all 3 years, disease epidemics were evident only in the late summer or autumn months in 1999 and 2001. Overall, 20% of 385 samples obtained from adult animals older than 11 weeks were seropositive. An RHD outbreak in 1999 contributed to an estimated population decline of 26%. A second RHD epidemic in February 2001 was associated with a population decline of 52% over the subsequent month. Following the outbreaks, the seroprevalence in adult survivors was between 40% and 50%. During 2000, no deaths from RHDV were confirmed and mortalities were predominantly attributed to predation. Influx of seronegative immigrants was greatest in the 1999 and 2001 breeding seasons, and preceded the RHD epidemics in those years. Our data suggest that RHD epidemics require the population immunity level to fall below a threshold where propagation of infection can be maintained through the population.