7 resultados para CALCIUM-BASED SORBENTS
em University of Queensland eSpace - Australia
Resumo:
The leaching of elements from the surface of charged fly ash particles is known to be an unsteady process. The mass transfer resistance provided by the diffuse double layer has been quantified as one of the reasons for this delayed leaching. In this work, a model based on mass transfer principles for predicting the concentration of calcium hydroxide in the diffuse double layer is presented. The significant difference between predicted calcium hydroxide concentration and the experimentally measured is explained.
Resumo:
The precipitation patterns and characteristics of calcium phosphate (CaP) phases deposited on HEMA-based hydrogels upon incubation in simulated body fluid (SBF-2) containing a protein (human serum albumin) have been investigated in relation to the calcification in an organic-free medium (SBF-1) and to that occurring after subcutaneous implantation in rats. In SBF-2, the deposits occurred exclusively as a peripheral layer on the surface of the hydrogels and consisted mainly of precipitated hydroxyapatite, a species deficient in calcium and hydroxyl ions, similarly to the deposits formed on the implanted hydrogels, where the deposited layer was thicker. In SBF-1, the deposits were mainly of brushite type. There was no evidence that albumin penetrated the interstices of hydrogels. As the X-ray diffraction patterns of the CaP deposits generated in SBF-2 showed a similar nature with those formed on the implanted hydrogel, it was concluded that the calcification in SBF-2 can mimic to a reliable extent the calcification process taking place in a biological environment.
Resumo:
In-vitro calcification of poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogels in simulated body fluid (SBF) under a steady/batch system without agitation or stirring the solutions has been investigated. It was noted that the formation of calcium phosphate (CaP) deposits primarily proceeded through spontaneous precipitation. The CaP deposits were found both on the surface and inside the hydrogels. It appears that the effect of chemical structure or reducing the relative number of oxygen atoms in the copolymers on the degree of calcification was only important at the early stage of calcification. The morphology of the CaP deposits was observed to be spherical aggregates with a thickness of the CaP layer less than 0.5 mu m. Additionally, the CaP deposits were found to be poorly crystalline or to have nano-size crystals, or to exist mostly as an amorphous phase. Characterization of the CaP phases in the deposits revealed that the deposits were comprised mainly of whitlockite [Ca9MgH(PO4)(7)] type apatite and DCPD (CaHPO4 center dot 2H(2)O) as the precursors of hydroxyapatite [Ca-10(PO4)(6)(OH)(2)]. The presence of carbonate in the deposits was also detected during the calcification of PHEMA based hydrogels in SBF solution.
Resumo:
Calcium oxide has been identified to be one of the best candidates for CO2 capture in zero-emission power-generation systems. However, it suffers a well-known problem of loss-in-capacity (i.e., its capacity of CO2 capture decreases after it undergoes cycles of carbonation/decarbonation). This problem is a potential obstacle to the adoption of the new technologies. This paper proposes a method of fabricating a CaO-based adsorbent without the problem of loss-in-capacity. An adsorbent was fabricated using the method and tested on a thermogravimetric analyzer. It was shown that the sorbent attained a utilization efficiency of more than 90% after 9 cycles of carbonation/decarbonation.
Resumo:
Bioenergetics differ between males and females of many species. Human females apportion a substantial proportion of energy resources towards gynoid fat storage, to support the energetic burden of reproduction. Similarly, axial calcium accrual is favoured in females compared with males. Nutritional status is a prognostic indicator in cystic fibrosis (CF), but girls and young women are at greater risk of death despite equivalent nutritional status to males. The aim of this study was to compare fat (energy) and calcium stores (bone density) in males and females with CF over a spectrum of disease severity. Methods: Fat as % body weight (fat%) and lumbar spine (LS) and total body (TB) bone mineral density (BMD) were measured using dual absorption X-ray photometry in 127(59M) control and 101(54M) CF subjects, aged 9–25 years. An equation for predicted age at death had been determined using survival data and history of pulmonary function for the whole clinic, based on a trivariate normal model using maximum likelihood methods (1). For the CF group, a disease severity index (predicted age at death) was calculated from the derived equations according to each subjects history of pulmonary function, current age, and gender. Disease severity was classified according to percentile of predicted age at death (‘mild’ ≥75th, ‘moderate’ 25th–75th, ‘severe’ ≤25th percentile). Wt for age z-score was calculated. Serum testosterone and oestrogen were measured in males and females respectively. Fat% and LSBMD were compared between the groups using ANOVA. Results: There was an interaction between disease severity and gender: increasing disease severity was associated with greater deficits in TB (p=0.01), LSBMD (p