3 resultados para C2H2
em University of Queensland eSpace - Australia
Resumo:
Zinc-finger-containing proteins can be classified into evolutionary and functionally divergent protein families that share one or more domains in which a zinc ion is tetrahedrally coordinated by cysteines and histidines. The zinc finger domain defines one of the largest protein superfamilies in mammalian genomes; 46 different conserved zinc finger domains are listed in InterPro (http://www.ebi.ac.uk/InterPro). Zinc finger proteins can bind to DNA, RNA, other proteins, or lipids as a modular domain in combination with other conserved structures. Owing to this combinatorial diversity, different members of zinc finger superfamilies contribute to many distinct cellular processes, including transcriptional regulation, mRNA stability and processing, and protein turnover. Accordingly, mutations of zinc finger genes lead to aberrations in a broad spectrum of biological processes such as development, differentiation, apoptosis, and immunological responses. This study provides the first comprehensive classification of zinc finger proteins in a mammalian transcriptome. Specific detailed analysis of the SP/Kruppel-like factors and the E3 ubiquitin-ligase RING-H2 families illustrates the importance of such an analysis for a more comprehensive functional classification of large protein families. We describe the characterization of a new family of C2H2 zinc-finger-containing proteins and a new conserved domain characteristic of this family, the identification and characterization of Sp8, a new member of the Sp family of transcriptional regulators, and the identification of five new RING-H2 proteins.
Resumo:
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of benzene at various wavelengths upon absorption of one or two UV photons followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G2M level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for C6H5+H, C6H4+H-2, C4H4+C2H2, C4H2+C2H4, C3H3+C3H3, C5H3+CH3, and C4H3+C2H3 have been calculated subsequently using both numerical integration of kinetic master equations and the steady-state approach. The results show that upon absorption of a 248 nm photon dissociation is too slow to be observable in molecular beam experiments. In photodissociation at 193 nm, the dominant dissociation channel is H atom elimination (99.6%) and the minor reaction channel is H-2 elimination, with the branching ratio of only 0.4%. The calculated lifetime of benzene at 193 nm is about 11 mus, in excellent agreement with the experimental value of 10 mus. At 157 nm, the H loss remains the dominant channel but its branching ratio decreases to 97.5%, while that for H-2 elimination increases to 2.1%. The other channels leading to C3H3+C3H3, C5H3+CH3, C4H4+C2H2, and C4H3+C2H3 play insignificant role but might be observed. For photodissociation upon absorption of two UV photons occurring through the neutral hot benzene mechanism excluding dissociative ionization, we predict that the C6H5+H channel should be less dominant, while the contribution of C6H4+H-2 and the C3H3+C3H3, CH3+C5H3, and C4H3+C2H3 radical channels should significantly increase. (C) 2004 American Institute of Physics.
Resumo:
The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous. Structure-function analysis of the chemotactic properties of murine S100A8 and human S100A12, particularly within the active hinge domain, suggests that the human protein is the functional homolog of the murine protein. Strong similarities between the promoter regions of human S100A12 and murine S100A8 support this possibility. This study provides insights into the possible processes of evolution of the EF-hand protein superfamily. Evolution of the S100 proteins appears to have occurred in a modular fashion, also seen in other protein families such as the C2H2-type zinc-finger family. (C) 2004 Elsevier Inc. All rights reserved.