6 resultados para C-kit Protooncogene

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, mast cells have been shown to produce cytokines which can direct the development of T-cell subsets. The aim of the present study was to determine the relationship between mast cells and the Th1/Th2 response in human periodontal disease. Tryptase+ mast cell numbers were decreased in chronic periodontitis tissues compared with healthy/gingivitis lesions. Lower numbers of c-kit+ cells, which remained constant regardless of clinical status, indicate that there may be no increased migration of mast cells into periodontal disease lesions. While there were no differences in IgG2+ or IgG4+ cell numbers in healthy/gingivitis samples, there was an increase in IgG4+ cells compared with IgG2+ cells in periodontitis lesions, numbers increasing with disease severity. This suggests a predominance of Th2 cells in periodontitis, although mast cells may not be the source of Th2-inducing cytokines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tau is a major microtubule-associated protein of axons and is also the principal component of the paired helical filaments (PHFs) that comprise the neurofibrillary tangles found in Alzheimer's disease and other tauopathies. Besides phosphorylation of tau on serine and threonine residues in both normal tau and tau from neurofibrillary tangles, Tyr-18 was reported to be a site of phosphorylation by the Src-family kinase Fyn. We examined whether tyrosine residues other than Tyr-18 are phosphorylated in tau and whether other tyrosine kinases might phosphorylate tau. Using mass spectrometry, we positively identified phosphorylated Tyr-394 in PHF-tau from an Alzheimer brain and in human fetal brain tau. When wild-type human tau was transfected into fibroblasts or neuroblastoma cells, treatment with pervanadate caused tau to become phosphorylated on tyrosine by endogenous kinases. By replacing each of the five tyrosines in tau with phenylalanine, we identified Tyr-394 as the major site of tyrosine phosphorylation in tau. Tyrosine phosphorylation of tau was inhibited by PP2 (4-amino-5-(4-chlorophenyl-7-(t-butyl) pyrazolo[3,4-d] pyrimidine), which is known to inhibit Src-family kinases and c-Abl. Cotransfection of tau and kinases showed that Tyr-18 was the major site for Fyn phosphorylation, but Tyr-394 was the main residue for Abl. In vitro, Abl phosphorylated tau directly. Abl could be coprecipitated with tau and was present in pretangle neurons in brain sections from Alzheimer cases. These results show that phosphorylation of tau on Tyr-394 is a physiological event that is potentially part of a signal relay and suggest that Abl could have a pathogenic role in Alzheimer's disease.