4 resultados para Côte basque
em University of Queensland eSpace - Australia
Resumo:
We present the comparative evaluation of school-based chemotherapy with praziquantel on Schistosoma haematobium reinfection patterns, 6, 12, 18 and 24 months after systematic treatment of schoolchildren in four villages of south-central Côte d'Ivoire. At baseline, very high S. haematobium infection prevalences of 88–94% were found in Taabo Village, located adjacent to a large man-made lake, and in Batera and Bodo, where small dams were constructed. In Assinzé, a village with no man-made environmental alterations, the baseline infection prevalence was significantly lower (67%). The parasitological cure rate, assessed 4 weeks after praziquantel administration in the village with the highest prevalence and intensity of infection, was high (82%), and showed a clear association with infection intensity prior to treatment. Six months after chemotherapy, significant reductions in the prevalence and intensity of infection were observed in all villages. However, infection prevalence was again high in Taabo Village (63%) and in Batera (49%). Different patterns of reinfection occurred in the four villages: rapid reinfection in Taabo Village to reach almost baseline infection prevalence 12 months post-treatment; slow but gradual increase in the prevalence and intensity of infection in Bodo; marked increase in prevalence and intensity of infection during the second year of the follow-up in Assinzé; and prevalence and intensity of infection that remained almost constant between 6 and 24 months post-treatment in Batera. Our study confirms that S. haematobium reinfection patterns largely depend on the local epidemiological setting, which is of central importance to tailoring treatment strategies that are well adapted to these different settings.
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.