4 resultados para CÁLCULO DFT
em University of Queensland eSpace - Australia
Resumo:
In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.
Resumo:
A review is given of the pore characterization of carbonaceous materials, including activated carbon, carbon fibres, carbon nanotubes, etc., using adsorption techniques. Since the pores of carbon media are mostly of molecular dimensions, the appropriate modem tools for the analysis of adsorption isotherms are grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT). These techniques are presented and applications of such tools in the derivation of pore-size distribution highlighted.
Resumo:
The synthesis of the pentadentate ligand 2,6-bis(3,3-dimethyl-2,4-dioxocyclohexanyl)-4-thiaheptane (N(4)Samp) is described. The synthetic pathway involves the coupling of two 1,3-(dimethylenedioxy)-2-methyl-2-(methylene-p-toluenesulfonyl)propane moieties with sodium sulfide and subsequent synthetic elaboration to prepare the final N4S donor system. The cobalt(III) complex [Co(N(4)Samp)Cl](2+) has been prepared and subsequently crystallized as the tetrachlorozincate salt. The X-ray structure analysis confirms the pentadentate nature of the ligand and shows the thioether donor occupying one apex with four equivalent amine donors effectively occupying the equatorial plane of the molecule. The sixth coordination site is occupied by a chloro ligand. The electronic absorption and C-13 NMR spectra have been studied. DFT calculations have been employed to explore structural and mechanistic comparisons between [Co(N(4)Samp)Cl](2+) and an analogous pentaamine complex.
Resumo:
The red fluorescent protein Rtms5H146S displays a transition from blue (absorbance λmax 590 nm) to yellow (absorbance λmax not, vert, similar453 nm) upon titration to low pH. The pKa of the reaction depends on the concentration of halide, offering promise for new expressible halide sensors. The protonation state involved in the low pH form of the chromophore remains, however, ambiguous. We report calculated excitation energies of different protonation states of an RFP chromophore model. These suggest that the relevant titration site is the phenoxy moiety of the chromophore, and the relevant base and conjugate acid are anionic and neutral chromophore species, respectively.