57 resultados para By-environment Interaction

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-environment trials (METs) used to evaluate breeding lines vary in the number of years that they sample. We used a cropping systems model to simulate the target population of environments (TPE) for 6 locations over 108 years for 54 'near-isolines' of sorghum in north-eastern Australia. For a single reference genotype, each of 547 trials was clustered into 1 of 3 'drought environment types' (DETs) based on a seasonal water stress index. Within sequential METs of 2 years duration, the frequencies of these drought patterns often differed substantially from those derived for the entire TPE. This was reflected in variation in the mean yield of the reference genotype. For the TPE and for 2-year METs, restricted maximum likelihood methods were used to estimate components of genotypic and genotype by environment variance. These also varied substantially, although not in direct correlation with frequency of occurrence of different DETs over a 2-year period. Combined analysis over different numbers of seasons demonstrated the expected improvement in the correlation between MET estimates of genotype performance and the overall genotype averages as the number of seasons in the MET was increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The haploid NK model developed by Kauffman can be extended to diploid genomes and to incorporate gene-by-environment interaction effects in combination with epistasis. To provide the flexibility to include a wide range of forms of gene-by-environment interactions, a target population of environment types (TPE) is defined. The TPE consists of a set of E different environment types, each with their own frequency of occurrence. Each environment type conditions a different NK gene network structure or series of gene effects for a given network structure, providing the framework for defining gene-by-environment interactions. Thus, different NK models can be partially or completely nested within the E environment types of a TPE, giving rise to the E(NK) model for a biological system. With this model it is possible to examine how populations of genotypes evolve in context with properties of the environment that influence the contributions of genes to the fitness values of genotypes. We are using the E(NK) model to investigate how both epistasis and gene-by-environment interactions influence the genetic improvement of quantitative traits by plant breeding strategies applied to agricultural systems. © 2002 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and nature of genotype-by-environment interactions (G×E) for grain yield (GY) and days to flower (DTF) in Cambodia were examined using a random population of 34 genotypes taken from the Cambodian rice improvement program. These genotypes were evaluated in multi-environment trials (MET) conducted across three years (2000 to 2002) and eight locations in the rainfed lowlands. The G×E interaction was partitioned into components attributed to genotype-by-location (G×L), genotype-by-year (G×Y) and genotype-by-location-by-year (G×L×Y) interactions. The G×L×Y interaction was the largest component of variance for GY. The G×L interaction was also significant and comparable in size to the genotypic component (G). The G×Y interaction was small and non significant. A major factor contributing to the large G×L×Y interactions for GY was the genotypic variation for DTF in combination with environmental variation for the timing and intensity of drought. Some of the interactions for GY associated with timing of plant development and exposure to drought were repeatable across the environments enabling the identification of three-target populations of environments (TPE) for consideration in the breeding program. Four genotypes were selected for wide adaptation in the rainfed lowlands in Cambodia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the improvement of genetic material suitable for on farm use under low-input conditions, participatory and formal plant breeding strategies are frequently presented as competing options. A common frame of reference to phrase mechanisms and purposes related to breeding strategies will facilitate clearer descriptions of similarities and differences between participatory plant breeding and formal plant breeding. In this paper an attempt is made to develop such a common framework by means of a statistically inspired language that acknowledges the importance of both on farm trials and research centre trials as sources of information for on farm genetic improvement. Key concepts are the genetic correlation between environments, and the heterogeneity of phenotypic and genetic variance over environments. Classic selection response theory is taken as the starting point for the comparison of selection trials (on farm and research centre) with respect to the expected genetic improvement in a target environment (low-input farms). The variance-covariance parameters that form the input for selection response comparisons traditionally come from a mixed model fit to multi-environment trial data. In this paper we propose a recently developed class of mixed models, namely multiplicative mixed models, also called factor-analytic models, for modelling genetic variances and covariances (correlations). Mixed multiplicative models allow genetic variances and covariances to be dependent on quantitative descriptors of the environment, and confer a high flexibility in the choice of variance-covariance structure, without requiring the estimation of a prohibitively high number of parameters. As a result detailed considerations regarding selection response comparisons are facilitated. ne statistical machinery involved is illustrated on an example data set consisting of barley trials from the International Center for Agricultural Research in the Dry Areas (ICARDA). Analysis of the example data showed that participatory plant breeding and formal plant breeding are better interpreted as providing complementary rather than competing information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G x E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G x E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large portion of the world's poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice, which account for 67% of the country's total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers' estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone tainted lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the relationships among testing environments is essential for better targeting cultivars to production environments. To identify patterns of cultivar, environment, cultivar-by-environment interactions, and opportunities for indirect selection for grain yield, a set of 25 spring wheat cultivars from China and the International Maize and Wheat Improvement Center (CIMMYT) was evaluated in nine environments in China and four management environments at CIMMYT in Cd. Obregon, Mexico, during two wheat seasons. Genetic background and original environment were the main factors influencing grain yield performance of the cultivars. Baviacora M 92, Xinchun 2 and Xinchun 6 showed relatively more stable and higher grain yields, whereas highly photoperiod sensitive cultivars Xinkehan 9, Kefeng 6 and Longmai 19 proved consistently inferior across environments, except in Harbin and Keshan, the two high latitude environments. Longmai 26, also from high latitude environments in the northeastern Heilongjiang province, was however probably not as photoperiodicly sensitive as other cultivars; from that region, and produced much higher grain yield and expressed a broader adaptation. None of the environments reported major diseases. Pattern analyses revealed that photoperiod response and planting option on beds were the two main factors underlying the observed interactions for grain yield. The production environment of planting on the flat in Mexico grouped together with Huhhot and Urumqi in both wheat seasons, indicating an indirect response to selection for grain yield in this CIMMYT managed environment could benefit the two Chinese environments. Both the environment of planting on the flat with Chinese Hejin and Yongning, and the three CIMMYT enviromnents planting on raised beds with Chinese Yongning grouped together only in one season, showing that repeatability may not be stable in this case.