28 resultados para Building blocks in elastomer composite fabrication
em University of Queensland eSpace - Australia
Resumo:
The sugarcane plant, with its enormous genetic capacity to accumulate carbon and manufacture and store sucrose, also has the potential to accumulate carbon and metabolically create a wide range of new molecules for industrial and other commercial uses. The extent to which this change can be developed and realised commercially is a function of the technical competence of the industry's R&D capacity, the reality of the commercial drivers which support this global agenda, and the determination of the industry to achieve such goals. The outcomes of existing R&D work already strongly support the technical challenges of this opportunity in sugarcane. The current challenge remains the commercialisation of the technology in a global market in which the current business structures and systems for the manufacture and distribution of existing (competitive) products makes the development of new product lines a higher risk than might otherwise be the case. This is despite all the claims that global markets are expecting and (in some cases) legislating the creation of more sustainable production systems. The options and issues for the development of a sugarcane biofactory system are discussed.
Resumo:
We propose a theory of trust in interorganizational virtual organizations that focuses on how trustworthiness can be communicated and trust built in this environment. The theory highlights three issues that must be dealt with if the potential obstacles to the development of trust in the virtual context are to be overcome. These are communication of trustworthiness facilitated by reliable Information and Communication Technology (ICT), establishment of a common business understanding, and strong business ethics. We propose four specific propositions relating to these issues, and suggest topics to be explored in future research. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The Bunge-Wand-Weber (BWW) representation model defines ontological constructs for information systems. According to these constructs the completeness and efficiency of a modeling technique can be defined. Ontology plays an essential role in e-commerce. Using or updating an existing ontology and providing tools to solve any semantic conflicts become essential steps before putting a system online. We use conceptual graphs (CGs) to implement ontologies. This paper evaluates CG capabilities using the BWW representation model. It finds out that CGs are ontologically complete according to Wand and Weber definition. Also it finds out that CGs have construct overload and construct redundancy which can undermine the ontological clarity of CGs. This leads us to build a meta-model to avoid some ontological-unclarity problems. We use some of the BWW constructs to build the meta-model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Clinician Development Program (CDP) is an initiative of Queensland Health’s Quality Improvement and Enhancement Program. At the Royal Brisbane & Royal Women's Hospital Health Service Districts, evidence-base practice (EBP) is an important CDP area in which several projects were carried out in 2002. This paper describes one such project. A medical librarian was invited to accompany the clinical team on morning rounds in the Medical Assessment & Planning Unit (MAPU). The librarian conducted information skills training in the ward and helped clinicians to answer questions directly related to patient care. Questions not answered during the round were followed-up, usually within 48 hours, and responses emailed to the consultant who led the rounds. At the project’s conclusion the librarian was invited to continue as a member of the MAPU clinical team, thus acknowledging the valuable role an information specialist can play in incorporating research evidence into patient care. Clinical librarianship (CL) creates a space, albeit a contentious one, for the health librarian at the bedside. This paper describes an Australian CL project and attempts to demystify the role of an information specialist in EBP. It also highlights some of the challenges facing librarians and clinicians attempting to embed EBP in clinical settings.
Resumo:
My involvement with Aboriginal people began in 1972 in my final year of architecture, when a small group of students were asked to advise on some Aboriginal building projects in Mt Isa and Cloncurry. This led to my Doctoral research and grew into the Aboriginal Environments Research Centre now well established at the university of Queensland. Although the personnel of this Centre have completed over 140 field trips in the last 20 years, it is a set of data collected largely from the first ten field trips in 1972-76 that will be presented in this paper.
Resumo:
The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.
Resumo:
Carbohydrates have been proven as valuable scaffolds to display pharmocophores and the resulting molecules have demonstrated useful biological activity towards various targets including the somatostatin receptors (SSTR), integrins, HIV-1 protease, matrix metalloproteinases (MMP), multidrug resistance-associated protein (MRP), and as RNA binders. Carbohydrate-based compounds have also shown antibacterial and herbicidal activity.
Resumo:
We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid ( DHICA) - and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers ( possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations ( leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems
Resumo:
We report a detailed photoluminescence study of cysteinyldopa-melanin ( CDM), the synthetic analogue of pheomelanin. Emission spectra are shown to be a far more sensitive probe of CDM's spectroscopic behavior than are absorption spectra. Although CDM and dopa-melanin ( DM, the synthetic analogue of eumelanin) have very similar absorption spectra, we find that they have very different excitation and emission characteristics; CDM has two distinct photoluminescence peaks that do not shift with excitation wavelength. Additionally, our data suggest that the radiative quantum yield of CDM is excitation energy dependent, an unusual property among biomolecules that is indicative of a chemically disordered system. Finally, we find that the radiative quantum yield for CDM is similar to 0.2%, twice that of DM, although still extremely low. This means that 99.8% of the energy absorbed by CDM is dissipated via nonradiative pathways, consistent with its role as a pigmentary photoprotectant.
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.
Resumo:
We present a photometric investigation of the variation in galaxy colour with environment in 11 X-ray-luminous clusters at 0.07 less than or equal to z less than or equal to 0.16 taken from the Las Campanas/AAT Rich Cluster Survey. We study the properties of the galaxy populations in individual clusters, and take advantage of the homogeneity of the sample to combine the clusters together to investigate weaker trends in the composite sample. We find that modal colours of galaxies lying on the colour-magnitude relation in the clusters become bluer by d(B - R)/dr(p) = -0.022 +/- 0.004 from the cluster core out to a projected radius of r(p) = 6 Mpc, further out in radius than any previous study. We also examine the variation in modal galaxy colour with local galaxy density, 2, for galaxies lying close to the colour-magnitude relation, and find that the median colour shifts bluewards by d(B - R)/d log(10)(Sigma) = -0.076 +/- 0.009 with decreasing local density across three orders of magnitude. We show that the position of the red envelope of galaxies in the colour-magnitude relation does not vary as a function of projected radius or density within the clusters, suggesting that the change in the modal colour results from an increasing fraction of bluer galaxies within the colour-magnitude relation, rather than a change in the colours of the whole population. We show that this shift in the colour-magnitude relations with projected radius and local density is greater than that expected from the changing morphological mix based on the local morphology-density relation. We therefore conclude that we are seeing a real change in the properties of galaxies on the colour-magnitude relation in the outskirts of clusters. The simplest interpretation of this result (and similar constraints in local clusters) is that an increasing fraction of galaxies in the lower density regions at large radii within clusters exhibit signatures of star formation in the recent past, signatures which are not seen in the evolved galaxies in the highest density regions.