91 resultados para Bubble extinction
em University of Queensland eSpace - Australia
Resumo:
A hydraulic jump is characterised by strong energy dissipation and air entrainment. In the present study, new air-water flow measurements were performed in hydraulic jumps with partially-developed flow conditions in relatively large-size facilities with phase-detection probes. The experiments were conducted with identical Froude numbers, but a range of Reynolds numbers and relative channel widths. The results showed drastic scale effects at small Reynolds numbers in terms of void fraction and bubble count rate distributions. The void fraction distributions implied comparatively greater detrainment at low Reynolds numbers leading to a lesser overall aeration of the jump roller, while dimensionless bubble count rates were drastically lower especially in the mixing layer. The experimental results suggested also that the relative channel width had little effect on the air-water flow properties for identical inflow Froude and Reynolds numbers.
Resumo:
In an open channel, the transition from super- to sub-critical flow is a flow singularity (the hydraulic jump) characterised by a sharp rise in free-surface elevation, strong turbulence and air entrainment in the roller. A key feature of the hydraulic jump flow is the strong free-surface aeration and air-water flow turbulence. In the present study, similar experiments were conducted with identical inflow Froude numbers Fr1 using a geometric scaling ratio of 2:1. The results of the Froude-similar experiments showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. Void fraction distributions implied comparatively greater detrainment at low Reynolds numbers yielding some lesser aeration of the jump roller. The dimensionless bubble count rates were significantly lower in the smaller channel, especially in the mixing layer. The bubble chord time distributions were quantitatively close in both channels, and they were not scaled according to a Froude similitude. Simply the hydraulic jump remains a fascinating two-phase flow motion that is still poorly understood.
Resumo:
Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.
Resumo:
Recent attempts to explain the susceptibility of vertebrates to declines worldwide have largely focused on intrinsic factors such as body size, reproductive potential, ecological specialization, geographical range and phylogenetic longevity. Here, we use a database of 145 Australian marsupial species to test the effects of both intrinsic and extrinsic factors in a multivariate comparative approach. We model five intrinsic (body size, habitat specialization, diet, reproductive rate and range size) and four extrinsic (climate and range overlap with introduced foxes, sheep and rabbits) factors. We use quantitative measures of geographical range contraction as indices of decline. We also develop a new modelling approach of phylogenetically independent contrasts combined with imputation of missing values to deal simultaneously with phylogenetic structuring and missing data. One extrinsic variable-geographical range overlap with sheep-was the only consistent predictor of declines. Habitat specialization was independently but less consistently associated with declines. This suggests that extrinsic factors largely determine interspecific variation in extinction risk among Australian marsupials, and that the intrinsic factors that are consistently associated with extinction risk in other vertebrates are less important in this group. We conclude that recent anthropogenic changes have been profound enough to affect species on a continent-wide scale, regardless of their intrinsic biology.
Resumo:
Affective learning, the learning of likes and dislikes, is proposed to differ from signal learning, the learning of relationships between events. However, affective learning research varies in the methodology used, and in addition, researchers concerned primarily with affective learning tend to use different paradigms from those concerned with signal learning. The current research used an affective priming task in addition to verbal ratings to assess changes in the valence of neutral geometric shapes in an aversive differential conditioning procedure. After acquisition, affective learning was present as indexed by ratings and affective priming, whereas after extinction, affective learning remained significant only in the ratings. This study suggests that different measures of affective learning may be differentially sensitive to valence, which has implications for studies that employ verbal ratings as the sole measure of affective learning. Moreover, there is no evidence from the current study that affective learning differs from signal learning.
Resumo:
Fear relevance, the potential of a stimulus to become quickly associated with fear, is a characteristic assumed to have an evolutionary basis and to result in preferential processing. Previous research has shown that fear relevant stimuli share a number of characteristics, negative valence and preferential identification in a visual search task, for instance. The present research examined whether these two characteristics can be acquired by non-fear relevant stimuli (geometric shapes) as a result of Pavlovian fear conditioning. Two experiments employed an aversive learning paradigm with geometric shape CSs and a shock US, with stimulus ratings, affective priming and visual search performance assessed before and after acquisition and after extinction. Differential electrodermal responses, larger during CS1 than CS, were present during acquisition but not during extinction. Affective priming results suggest that the CS1 acquired negative valence during acquisition, which was lost during extinction. However, negative valence as indexed by more negative ratings for CS1 than for CS shapes seemed to survive extinction. Preferential attentional processing as indexed by faster detection of CS1 among CS shapes than vice versa on the visual search task also remained. The current research confirmed that characteristics of fear relevant stimuli can be acquired in an aversive learning episode and that they may be extinguished. This supports the proposal that fear relevance may be malleable through learning.
Resumo:
The acquisition and extinction of affective valence to neutral geometrical shape conditional stimuli was investigated in three experiments. Experiment 1 employed a differential conditioning procedure with aversive shock USs. Differential electrodermal responding was evident during acquisition and lost during extinction. As indexed by verbal ratings, the CS1 acquired negative valence during acquisition,which was reduced after extinction. Affective priming, a reaction time based demand free measure of stimulus valence, failed to provide evidence for affective learning. Experiment 2 employed pictures of happy and angry faces as USs.Valence ratings after acquisitionweremore positive for theCS paired with happy faces (CS-H) and less positive for the CS paired with angry faces (CS-A) than during baseline. Extinction training reduced the extent of acquired valence significantly for both CSs, however, ratings of the CS-A remained different from baseline. Affective priming confirmed these results yielding differences between CS-A and CS-H after acquisition for pleasant and unpleasant targets, but for pleasant targets only after extinction. Experiment 3 replicated the design of Experiment 2, but presented the US pictures backwardly masked. Neither rating nor affective priming measures yielded any evidence for affective learning. The present results confirm across two different experimental procedures that, contrary to predictions from dual process accounts of human learning, affective learning is subject to extinction.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The link between body size and risk of extinction has been the focus of much recent attention. For Australian terrestrial mammals this link is of particular interest because it is widely believed that species in the intermediate size range of 35-5500 g (the critical weight range) have been the most prone to recent extinction. But the relationship between body size and extinction risk in Australian mammals has never been subject to a robust statistical analysis. Using a combination of randomization tests and phylogenetic comparative analyses, we found that Australian mammal extinctions and declines have been nonrandom with respect to body size, but we reject the hypothesis of a critical weight range at intermediate sizes. Small species appear to be the least prone to extinction, but extinctions have not been significantly clustered around intermediate sizes. Our results suggest that hypotheses linking intermediate body size with high risk of extinction in Australian mammals are misguided and that the focus of future research should shift to explaining why the smallest species are the most resistant to extinction.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.
Resumo:
It is becoming increasingly clear that species of smaller body size tend to be less vulnerable to contemporary extinction threats than larger species, but few studies have examined the mechanisms underlying this pattern. In this paper, data for the Australian terrestrial mammal fauna are used to ask whether higher reproductive output or smaller home ranges can explain the reduced extinction risk of smaller species. Extinct and endangered species do indeed have smaller litters and larger home ranges for their body size than expected under a null model. In multiple regressions, however, only litter size is a significant predictor of extinction risk once body size and phylogeny are controlled for. Larger litters contribute to fast population growth, and are probably part of the reason that smaller species are less extinction-prone. The effect of litter size varies between the mesic coastal regions and the and interior of Australia, indicating that the environment a species inhabits mediates the effect of biology on extinction risk. These results suggest that predicting extinction risk from biological traits is likely to be a complex task which must consider explicitly interactions between biology and environment.
Resumo:
A new device has been developed to directly measure the bubble loading of particle-bubble aggregates in industrial flotation machines, both mechanical flotation cells as well as flotation column cells. The bubble loading of aggregates allows for in-depth analysis of the operating performance of a flotation machine in terms of both pulp/collection zone and froth zone performance. This paper presents the methodology along with an example showing the excellent reproducibility of the device and an analysis of different operating conditions of the device itself. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Risk-ranking protocols are used widely to classify the conservation status of the world's species. Here we report on the first empirical assessment of their reliability by using a retrospective study of 18 pairs of bird and mammal species (one species extinct and the other extant) with eight different assessors. The performance of individual assessors varied substantially, but performance was improved by incorporating uncertainty in parameter estimates and consensus among the assessors. When this was done, the ranks from the protocols were consistent with the extinction outcome in 70-80% of pairs and there were mismatches in only 10-20% of cases. This performance was similar to the subjective judgements of the assessors after they had estimated the range and population parameters required by the protocols, and better than any single parameter. When used to inform subjective judgement, the protocols therefore offer a means of reducing unpredictable biases that may be associated with expert input and have the advantage of making the logic behind assessments explicit. We conclude that the protocols are useful for forecasting extinctions, although they are prone to some errors that have implications for conservation. Some level of error is to be expected, however, given the influence of chance on extinction. The performance of risk assessment protocols may be improved by providing training in the application of the protocols, incorporating uncertainty in parameter estimates and using consensus among multiple assessors, including some who are experts in the application of the protocols. Continued testing and refinement of the protocols may help to provide better absolute estimates of risk, particularly by re-evaluating how the protocols accommodate missing data.
Resumo:
The birth, death and catastrophe process is an extension of the birth-death process that incorporates the possibility of reductions in population of arbitrary size. We will consider a general form of this model in which the transition rates are allowed to depend on the current population size in an arbitrary manner. The linear case, where the transition rates are proportional to current population size, has been studied extensively. In particular, extinction probabilities, the expected time to extinction, and the distribution of the population size conditional on nonextinction (the quasi-stationary distribution) have all been evaluated explicitly. However, whilst these characteristics are of interest in the modelling and management of populations, processes with linear rate coefficients represent only a very limited class of models. We address this limitation by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still be found for the expected extinction times.