46 resultados para Bread Wheat
em University of Queensland eSpace - Australia
Resumo:
Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G x E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G x E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.
Resumo:
Understanding the relationships among testing environments is essential for better targeting cultivars to production environments. To identify patterns of cultivar, environment, cultivar-by-environment interactions, and opportunities for indirect selection for grain yield, a set of 25 spring wheat cultivars from China and the International Maize and Wheat Improvement Center (CIMMYT) was evaluated in nine environments in China and four management environments at CIMMYT in Cd. Obregon, Mexico, during two wheat seasons. Genetic background and original environment were the main factors influencing grain yield performance of the cultivars. Baviacora M 92, Xinchun 2 and Xinchun 6 showed relatively more stable and higher grain yields, whereas highly photoperiod sensitive cultivars Xinkehan 9, Kefeng 6 and Longmai 19 proved consistently inferior across environments, except in Harbin and Keshan, the two high latitude environments. Longmai 26, also from high latitude environments in the northeastern Heilongjiang province, was however probably not as photoperiodicly sensitive as other cultivars; from that region, and produced much higher grain yield and expressed a broader adaptation. None of the environments reported major diseases. Pattern analyses revealed that photoperiod response and planting option on beds were the two main factors underlying the observed interactions for grain yield. The production environment of planting on the flat in Mexico grouped together with Huhhot and Urumqi in both wheat seasons, indicating an indirect response to selection for grain yield in this CIMMYT managed environment could benefit the two Chinese environments. Both the environment of planting on the flat with Chinese Hejin and Yongning, and the three CIMMYT enviromnents planting on raised beds with Chinese Yongning grouped together only in one season, showing that repeatability may not be stable in this case.
Resumo:
Improvement of processing quality is a very important objective for Chinese wheat breeding programs. Twenty-five CIMMYT and Chinese spring wheat cultivars were grown at four managed conditions by CIMMYT in Cd. Obregon, Sonora, Mexico and in nine environments in China, over two successive wheat seasons from 2000 to 2002. These trials were used to identify patterns of cultivar, environment and cultivar x environment interactions, and to determine opportunities for indirect selection for protein content and the protein-quality related parameter, SDS sedimentation (SDSS) value. The cultivar Inqalab 91 showed low levels of interaction with environments in the 2000-01 crop cycle for protein content, and expressed intermediate levels for both protein content and SDSS value, across most of the environments in both years. Longmai 26 had consistently high protein content and SDSS value across environments in both years, indicating that it is possible to breed cultivars expressing high yields with good protein properties. Cluster analyses revealed that cultivars grouped differently for protein content and SDSS value. Besides photoperiod, water availability appeared to influence the ranking of cultivars for protein content and SDSS value. Temperature and soil type may underlie the observed interactions for protein content, while temperature may also be a factor associated with interactions for SDSS value. The full irrigation managed environment in Mexico, with the cultivars sown on raised beds two months later than optimum and exposing them to late heat, clustered together with the Chinese environments Huhhot, Yongning, and Hejin in the 2000-01 season for SDSS value. This indicates that there is an opportunity to exploit indirect responses to selection in the CIMMYT management environments for SDSS value with relevance for China's spring wheat regions. However, there seemed little chance for positive indirect selection in CIMMYT's managed environments for China in regard to protein content, as environments clustered distinctly. Pattern analyses permitted a sensible and useful summary for this multi environment experiment, helping in understanding natural relationships and variations in cultivar performance among the various environment groups, and assisting in the structuring of environments.
Resumo:
Eight milling quality and protein properties of autumn-sown Chinese wheats were investigated using 59 cultivars and advanced lines grown in 14 locations in China from 1995 to 1998. Wide ranges of variability for all traits were observed across genotypes and locations. Genotype, location, year, and their interactions all significantly influenced most of the quality parameters. Kernel hardness, Zeleny sedimentation value, and mixograph development time were predominantly influenced by the effects of genotype. Genotype, location and genotype x location interaction were all important sources of variation for thousand kernel weight, test weight, protein content, and falling number, whereas genotype x location interaction had the largest effect on flour yield. Most of the genotypes were characterized by weak gluten strength with Zeleny sedimentation values less than 40 ml and mixograph development time shorter than 3 min. Eight groups of genotypes were recognized based on the average quality performance, grain hardness and gluten strength were the two parameters that determined the grouping, with contributions from protein content. Genotypes such as Zhongyou 16 and Annong 8903 displayed good milling quality, high grain hardness, protein content and strong gluten strength with high sedimentation value and long mixograph development time. Genotypes such as Lumai 15 and Yumai 18 were characterized by low grain hardness, protein content and weak gluten strength. Genotypes such as Yannong 15 and Chuanmai 24 were characterized by strong gluten strength with high sedimentation value and long mixograph development time, but low grain hardness and protein content lower than 12.3%. Genotypes such as Jingdong 6 and Xi'an 8 had weak gluten strength, but with high grain hardness and protein content higher than 12.2%. Five groups of locations were identified, and protein content and gluten strength were the two parameters that determined the grouping. Beijing, Shijiazhuang, Nanyang, Zhumadian and Nanjing produced wheats with medium to strong gluten strength and medium protein content, although there was still a large variation for most of the traits investigated between the locations. Wheat produced in Yantai was characterized by strong gluten strength, but with low protein content. Jinan, Anyang and Linfen locations produced wheats with medium to weak gluten strength and medium to high protein content. Wheats produced in Yangling, Zhenzhou, and Chengdu were characterized by weak gluten strength with medium to low protein content, whereas wheats produced in Xuzhou and Wuhan were characterized by weak gluten strength with low protein content. Industrial grain quality could be substantially improved through integrating knowledge of geographic genotype distribution with key location variables that affected end-use quality.
Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes
Resumo:
The effect of major dwarfing genes, Rht-B1 and Rht-D1, in bread (Triticum aestivum L.) and durum (Triticum turgidum L. var. durum) wheats varies with environment. Six reduced-height near-isogenic spring wheat lines, included in the International Adaptation Trial (IAT), were grown in 81 trials around the world. Of the 56 IAT trials yielding > 3 Mg ha(-1), the mean yield of semidwarfs was significantly greater than tails in 54% of trials; in the 27 trials yielding < 3 Mg ha-1, semidwarfs were superior in only 24%. Sixteen pairs of semidwarf-tall near-isolines were grown in six managed drought environment trials (DETs) in northwestern Mexico. In these trials, semidwarfs outyielded talls in all but the most droughted environment (2.5 Mg ha(-1)). The effect of the height alleles varied with genetic background and environment. For both yield and height, variance components for allele and environment by allele interaction were larger than those for genetic background and genetic background by environment. Pattern analysis showed that tall and semidwarf lines had similar adaptation to stressed environments (< 2.8 Mg ha(-1), low rainfall), while semidwarfs yielded more in less stressed environments (> 4.3 Mg ha(-1), high rainfall). The best adapted near-isogenic pair had a Kauz background, where the tall was only 16% taller than the dwarf. In the Kauz-derived pair, the semidwarf outyielded the tall in only 13% of trials with no differences in low yielding trials. This supports the idea that '' short talls '' may be useful in marginal environments (yield < 3 Mg ha(-1)).
Resumo:
In the extrusion manufacture of starch-based thermoplastics, such as biodegradable packaging materials, glycerol is an effective additive as a plasticiser, that is, to diminish the brittle nature of the product and provide the desired extent of flexibility. However, the addition of glycerol may also affect the gelatinisation behaviour of the starch-water mixture, and hence the required processing conditions for producing a homogeneously gelatinised starch-based material. The effect of glycerol on the gelatinisation of wheat starch was studied using differential scanning calorimetry (DSC). Mixtures of starch, water and glycerol were investigated with a water content ranging from 12 - 40% and a glycerol concentration up to 75%. Dependent on composition, the enthalpy of gelatinisation ranged from 1.7 - 12.6 J/g (on a dry starch basis), while the onset and peak temperatures varied from 54 to 86 degreesC and 60 to 90 degreesC, respectively. As expected, water acted as a plasticiser in that the onset temperature for gelatinisation (TO) decreased with increasing moisture content. Glycerol, however, increased To. It is shown that the T-0 of starch-glycerol-water mixtures may be predicted on the basis of the effective moisture content of the starch fraction of these mixtures resulting from the relative speed of moisture absorption by glycerol and starch, respectively. Moisture sorption kinetics of wheat starch and glycerol in 100% relative humidity were determined and used to predict the preferential water absorption by glycerol in starch-glycerol-water mixtures and hence the resulting T-0 of the system.
Resumo:
The effects of microbial phytase supplementation of phosphorus-adequate, wheat-based diets with available lysine : energy density ratios ranging from 0.75 to 0.90 g available lysine/MJ DE on growth performance of weaner pigs were investigated in 3 studies. In the first study, increasing levels of dietary phytate depressed growth rates (P<0.08) and efficiency of feed conversion (P<0.01) and phytase supplementation enhanced growth rates (P<0.05) and tended to improve feed efficiency (P<0.15). There were no significant interactions between dietary phytate and phytase inclusion to support the hypothesis that dietary substrate levels of phytate govern responses to phytase. However, in this and other studies, percentage increases in efficiency of feed conversion generated by phytase were positively correlated to dietary phytate concentrations to a significant extent (P<0.005), so it is possible that dietary substrate levels are of importance to the magnitude of responses following phytase supplementation. Diets with 3 levels of protein, expressed as 0.80, 0.85, and 0.90 g available lysine/MJ DE, were offered to pigs without and with phytase in the second study. Protein/amino acid levels or lysine : energy density ratios did not influence growth performance, which was not expected. However, phytase tended to increase growth rates (P<0.08) and improved feed efficiency (P<0.01). Although it is believed that phytase may have a positive influence on protein utilisation, this was not demonstrated in this experiment. In the third study, the simultaneous inclusion of phytase and xylanase feed enzymes in wheat-based weaner diets did not increase growth performance responses in comparison with phytase alone. Individually, phytase improved feed efficiency (P<0.05) and numerically increased growth rates (P<0.25). Although responses in growth performance of weaner pigs following phytase supplementation lacked consistency, they were generally positive and indicative of anti-nutritive properties of phytate that are unrelated to P availability. That these positive responses were observed in diets with suboptimal available lysine : energy density ratios is consistent with the possibility that phytate has a negative influence on protein utilisation, which is ameliorated by phytase. However, these antinutritive effects and their underlying mechanisms need to be better defined if full advantage of the potential protein-sparing effects of microbial phytase is to be taken.
Resumo:
Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-deficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'protein driven' as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.
Resumo:
To establish the identity of Fusarium species associated with head blight (FHB) and crown rot (CR) of wheat, samples were collected from wheat paddocks with different cropping history in southern Queensland and northern New South Wales during 2001. CR was more widespread but FHB was only evident in northern NSW and often occurred with CR in the same paddock. Twenty different Fusarium spp. were identified from monoconidial isolates originating from different plant parts by using morphology and species-specific PCR assays. Fusarium pseudograminearum constituted 48% of all isolates and was more frequently obtained from the crown, whereas Fusarium graminearum made up 28% of all isolates and came mostly from the head. All 17 Fusarium species tested caused FHB and all 10 tested caused CR in plant infection assays, with significant (P < 0.001) difference in aggressiveness among species and among isolates within species for both diseases. Overall, isolates from stubble and crown were more aggressive for CR, whereas isolates from the flag leaf node were more aggressive for FHB. Isolates that were highly aggressive in causing CR were those originating from paddocks with wheat following wheat, whereas those from fields with wheat following maize or sorghum were highly aggressive for FHB. Although 20% of isolates caused severe to highly severe FHB and CR, there was no significant (P < 0.32) correlation between aggressiveness for FHB and CR. Given the ability of F. graminearum to colonise crowns in the field and to cause severe CR in bioassays, it is unclear why this pathogen is not more widely distributed in Australia.
Resumo:
Plant breeders use many different breeding methods to develop superior cultivars. However, it is difficult, cumbersome, and expensive to evaluate the performance of a breeding method or to compare the efficiencies of different breeding methods within an ongoing breeding program. To facilitate comparisons, we developed a QU-GENE module called QuCim that can simulate a large number of breeding strategies for self-pollinated species. The wheat breeding strategy Selected Bulk used by CIMMYT's wheat breeding program was defined in QuCim as an example of how this is done. This selection method was simulated in QuCim to investigate the effects of deviations from the additive genetic model, in the form of dominance and epistasis, on selection outcomes. The simulation results indicate that the partial dominance model does not greatly influence genetic advance compared with the pure additive model. Genetic advance in genetic systems with overdominance and epistasis are slower than when gene effects are purely additive or partially dominant. The additive gene effect is an appropriate indicator of the change in gene frequency following selection when epistasis is absent. In the absence of epistasis, the additive variance decreases rapidly with selection. However, after several cycles of selection it remains relatively fixed when epistasis is present. The variance from partial dominance is relatively small and therefore hard to detect by the covariance among half sibs and the covariance among full sibs. The dominance variance from the overdominance model can be identified successfully, but it does not change significantly, which confirms that overdominance cannot be utilized by an inbred breeding program. QuCim is an effective tool to compare selection strategies and to validate some theories in quantitative genetics.
Resumo:
Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.
Resumo:
An investigation was conducted to evaluate the impact of experimental designs and spatial analyses (single-trial models) of the response to selection for grain yield in the northern grains region of Australia (Queensland and northern New South Wales). Two sets of multi-environment experiments were considered. One set, based on 33 trials conducted from 1994 to 1996, was used to represent the testing system of the wheat breeding program and is referred to as the multi-environment trial (MET). The second set, based on 47 trials conducted from 1986 to 1993, sampled a more diverse set of years and management regimes and was used to represent the target population of environments (TPE). There were 18 genotypes in common between the MET and TPE sets of trials. From indirect selection theory, the phenotypic correlation coefficient between the MET and TPE single-trial adjusted genotype means [r(p(MT))] was used to determine the effect of the single-trial model on the expected indirect response to selection for grain yield in the TPE based on selection in the MET. Five single-trial models were considered: randomised complete block (RCB), incomplete block (IB), spatial analysis (SS), spatial analysis with a measurement error (SSM) and a combination of spatial analysis and experimental design information to identify the preferred (PF) model. Bootstrap-resampling methodology was used to construct multiple MET data sets, ranging in size from 2 to 20 environments per MET sample. The size and environmental composition of the MET and the single-trial model influenced the r(p(MT)). On average, the PF model resulted in a higher r(p(MT)) than the IB, SS and SSM models, which were in turn superior to the RCB model for MET sizes based on fewer than ten environments. For METs based on ten or more environments, the r(p(MT)) was similar for all single-trial models.