2 resultados para Branched Polymer

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Double Convected Pom-Pom model was recently introduced to circumvent some numerical and theological defects found in other formulations of the Pom-Pom concept. It is used here for the simulation of a benchmark problem: the flow in an abrupt planar contraction. The predictions are compared with birefringence measurements and show reasonable quantitative agreement with experimental data. A parametric study is also carried out with the aim of analysing the effect of the branching parameter on vortex dynamics and extrudate swell. The results show that the Double Convected Pom-Pom model (DCPP) model is able to discriminate between branched and linear macromolecular structures in accordance with experimental observations. In that respect, the role of the extensional properties in determining complex flow behaviour is stressed. Also, the ratio of the first normal stress difference to the shear stress appears to play a major role in die swell observation. For the time being, the role of the second normal stress difference appears to be less obvious to evaluate in this complex flow. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inherent self-recognition properties of DNA have led to its use as a scaffold for various nanotechnology self-assembly applications, with macromolecular complexes, metallic and semiconducting nanoparticles, proteins, inter alia, being assembled onto a designed DNA scaffold. Such structures may typically comprise a number of DNA molecules organized into macromolecules. Many studies have used synthetic methods to produce the constituent DNA molecules, but this typically constrains the molecules to be no longer than around 100 base pairs (30 nm). However, applications that require larger self-assembling DNA complexes, several tens of nanometers or more, need to be generated by other techniques. Here, we present a generic technique to generate large linear, branched, and/or circular DNA macromolecular complexes. The effectiveness of this technique is demonstrated here by the use of Lambda Bacteriophage DNA as a template to generate single- and double-branched DNA structures approximately 120 nm in size.