103 resultados para Brain Activation Pattern
em University of Queensland eSpace - Australia
Resumo:
We used an event related fMRI design to study the BOLD response in Huntington’s disease (HD) patients during performance of a Simon interference task. We hypothesised that HD patients will demonstrate significantly slower RTs than controls, and that there will be significant differences in the pattern of brain activation between groups. Seventeen HD patients and 15 age and sex matched controls were scanned using 3T GE scanner (FOV = 24 cm2; TE = 40 ms; TR = 3 s; FA = 60°; slice thickness = 6 mm; in-plane resolution = 1.88x1.88 mm2). The task involved two activation conditions, namely congruent (for example, left pointing arrow appearing on the left side of the screen) and incongruent (for example, left pointing arrow appearing on the right side of the screen), and a baseline condition. Each stimulus was presented for 2500 ms followed by a blank screen for 500 ms. Subjects were instructed to press a button using the same hand as indicated by the direction of the arrow head and were given 3000 ms to respond. Data analysis was performed using SPM2 with a random effects analysis model. For each subject parameter estimates for combined task conditions (congruent and incongruent combined) were calculated. Comparisons such as these, based on block designs, have superior statistical power for detecting subtle changes in the BOLD response anywhere in the brain. The activations reported are significant at PFDR_corr
Resumo:
The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Resumo:
OBJECTIVE: Dendritic cells (DC) are the only antigen-presenting cells that can activate naive T lymphocytes and initiate a primary immune response. They are also thought to have a role in immune tolerance. DC traffic from the blood to peripheral tissue where they become activated. They then present antigen and the costimulating signals necessary to initiate an immune response. In this study, we investigated the number, subsets, and activation pattern of circulating and intestinal DC from patients with clinically mild ulcerative colitis (UC) or Crohn's disease. METHODS: Patients were recruited, if they were not taking immunosuppressive therapy, and were assessed for clinical severity of their disease using for UC, the Clinical Activity Index, and for Crohn's disease, the Crohn's Disease Activity Index. Blood CD11c(+) and CD11c(-) DC subsets, expression of costimulatory antigens, CD86 and CD40, and the early differentiation/activation antigen, CMRF44, were enumerated by multicolor flow cytometry of lineage negative (lin(-) = CD3(-), CD19(-), CD14(-), CD16(-)) HLA-DR+ DC. These data were compared with age-matched healthy and the disease control groups of chronic noninflammatory GI diseases (cGI), acute noninflammatory GI diseases (aGI), and chronic non-GI inflammation (non-GI). In addition, cryostat sections of colonoscopic biopsies from healthy control patients and inflamed versus noninflamed gut mucosa of inflammatory bowel disease (IBD) patients were examined for CD86(+) and CD40(+)lin(-) cells. RESULTS: Twenty-one Crohn's disease and 25 UC patients, with mean Crohn's Disease Activity Index of 98 and Clinical Activity Index of 3.1, and 56 healthy controls, five cGI, five aGI, and six non-GI were studied. CD11c(+) and CD11c(-) DC subsets did not differ significantly between Crohn's, UC, and healthy control groups. Expression of CD86 and CD40 on freshly isolated blood DC from Crohn's patients appeared higher (16.6%, 31%) and was significantly higher in UC (26.6%, 46.3%) versus healthy controls (5.5%, 25%) (p = 0.004, p = 0.012) and non-GI controls (10.2%, 22.8%) (p = 0.012, p = 0.008), but not versus cGI or aGI controls. CD86(+) and CD40(+) DC were also present in inflamed colonic and ileal mucosa from UC and Crohn's patients but not in noninflamed IBD mucosa or normal mucosa. Expression of the CMRF44 antigen was low on freshly isolated DC, but it was upregulated after 24-h culture on DC from all groups, although significantly less so on DC from UC versus Crohn's or healthy controls (p = 0.024). The CMRF44(+) antigen was mainly associated with CD11c(+) DC, and in UC was inversely related to the Clinical Activity Index (r = -0.69, p = 0.0002). CONCLUSIONS: There is upregulation of costimulatory molecules on blood DC even in very mild IBD but surprisingly, there is divergent expression of the differentiation/activation CMRF44 antigen. Upregulation of costimulatory molecules and divergent expression of CMRF44 in blood DC was also apparent in cGI and aGI but not in non-GI or healthy controls, whereas intestinal CD86(+) and CD40(+) DC were found only in inflamed mucosa from IBD patients. Persistent or distorted activation of blood DC or divergent regulation of costimulatory and activation antigens may have important implications for gut mucosal immunity and inflammation. (Am J Gastroenterol 2001;96:2946-2956. (C) 2001 by Am. Coll. of Gastroenterology).
Resumo:
Previously, we reported the presence of dual promoters, referred to as distal (DP) and proximal, with a negative regulatory element between them in the mouse mu -opioid receptor (mor) gene. Here we have identified a positive regulatory element influencing mor DP transcription, which contains multiple consensus binding motifs for Sox factors (sex-determining Sry-like high mobility group box-containing genes). In gel supershift assays, the Sox family member Sox18 bound directly to the multiple Sox consensus binding motifs of the mor DP enhancer. Overexpression of Sox18 cDNA increased luciferase activity regulated by the mor DP, and did so in a Sox18 concentration-dependent manner. In contrast, overexpression of another Sox member, Sox5, triggered no such trans-activation of mor DP-driven luciferase activity or DNA-protein binding activity. These results suggest that Sox18 directly and specifically stimulates mor gene expression, by trans-activating the mor DP enhancer.
Resumo:
To determine whether the visuospatial n-back working memory task is a reliable and valid measure of cognitive processes believed to underlie intelligence, this study compared the reaction times and accuracy of perforniance of 70 participants, with performance on the Multidimensional Aptitude Battery (MAB). Testing was conducted over two sessions separated by 1 week. Participants completed the MAB during the second test session. Moderate testretest reliability for percentage accuracy scores was found across the four levels of the n-back task, whilst reaction times were highly reliable. Furthermore, participants' performance on the MAB was negatively correlated with accuracy of performance at the easier levels of the n-back task and positively correlated with accuracy of performance at the harder task levels. These findings confirm previous research examining the cognitive basis of intelligence, and suggest that intelligence is the product of faster speed of information processing, as well as superior working memory capacity. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
When two targets are presented in rapid succession, identification of the first target is nearly perfect while identification of the second is severely impaired at shorter inter-target lags, and then gradually improves as lag increases. This second-target deficit is known as the attentional blink (AB). Numerous studies have implicated competition for access to higher-order processing mechanisms as the primary cause of the AB. However, relatively few studies have directly examined how the AB modulates activity in specific brain areas. To this end, we used fMRI to measure activation in the occipital and parietal cortices (including V1, V2, and area MT) during an AB task. Participants were presented with an initial target of oriented line segments embedded in a central stream of letter distractors. This central target was followed 100 - 700 ms later by a peripheral ‘X’ presented at one of four locations along with three ‘+’ distractors. All peripheral items were presented in the centre of a small field of moving dots. Participants made non-speeded judgments about line-segment orientation and the location of the second target at the end of a trial and to ignore all other stimuli. The results showed a robust AB characterised by a linear improvement in second-target accuracy as lag increased. This pattern of behavioural results was mirrored by changes in activation patterns across a number of visual areas indicating robust modulation of brain activity by the AB.
Resumo:
The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions. (C) 2001 Wiley-Liss, Inc.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
The functional brain organisation of mathematically gifted adolescents may be different from those of average mathematical ability. In this study we used fMRI to examine the neural circuitry that mediates the performance of mathematically gifted boys and average ability controls while engaged in mental rotation. Eight math gifted male adolescents and five average ability male adolescents were presented 18 control and 18 mental rotation trials in two separate blocks. Participants selected one of four test stimuli to match the target stimulus by pressing one of four fibreoptic buttons. The control task required a simple 'best match' for the target stimulus. EPI scans were acquired on a 3-T MR scanner and a fixed effects statistical analysis (SPM99) was used to identify areas of significant activation in the rotation tasks, for the two groups. The results indicate that during mental rotation both groups activate the parietal lobes bilaterally, though to different levels. Moreover, the math gifted are uniformly bilateral in their pattern of activation, and engage some anterior regions not found in those of average ability. These regions include bilateral prefrontal cortex and the right anterior cingulate, which may serve to heighten concentration, and to optimise the pre-planning of purposeful actions.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
A functional magnetic resonance imaging mental rotation paradigm was used to investigate the patterns of activation of fronto-parietal brain areas in male adolescents with attention-deficit hyperactivity disorder, combined type (ADHD-CT) compared with age-, gender-, handedness- and performance IQ-matched healthy controls. The ADHD-CT group had (a) decreased activation of the 'action-attentional' system (including Brodmann's areas (BA) 46, 39,40) and the superior parietal (BA7) and middle frontal (BA10) areas and (b) increased activation of the posterior midline attentional system. These different neuroactivation patterns indicate widespread frontal, striatal and parietal dysfunction in adolescents with ADHD-CT. Declaration of interest None.
Resumo:
Mental rotation involves the creation and manipulation of internal images, with the later being particularly useful cognitive capacities when applied to high-level mathematical thinking and reasoning. Many neuroimaging studies have demonstrated mental rotation to be mediated primarily by the parietal lobes, particularly on the right side. Here, we use fMRI to show for the first time that when performing 3-dimensional mental rotations, mathematically gifted male adolescents engage a qualitatively different brain network than those of average math ability, one that involves bilateral activation of the parietal lobes and frontal cortex, along with heightened activation of the anterior cingulate. Reliance on the processing characteristics of this uniquely bilateral system and the interplay of these anterior/posterior regions may be contributors to their mathematical precocity.