5 resultados para Bounds

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound holds for arbitrary n-qubit gates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have documented the growing economic and financial integration between countries. Among other things, this has led to the argument that greater integration results in higher bilateral correlations between returns on national stock markets. This study endeavours to link the two issues by utilizing the assumption that if countries are integrated, they would have to display a minimum level of correlation. This is achieved by constructing a bound on the level of the bilateral correlation, as originally developed by Kasa (1995). In contrast to Kasa, the present studies demonstrate that the correlation bound may not be downward sloping in all cases and careful interpretation of the results is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.

Relevância:

20.00% 20.00%

Publicador: