10 resultados para Boundary layer flow

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the structure of the daytime atmospheric boundary layer during onshore flow over a narrow coastal plain is presented. The main emphasis of the study is on the nature and causes of heating and cooling observed in the boundary layer temperature profiles. Measurements included vertical temperature profiles above at least two sites derived from radiosondes and aircraft, as well as surface estimates of radiative and sensible heat fluxes. Surface meteorological and pilot balloon data were also available, providing further evidence of short-term changes in atmospheric boundary layer structure. The Manawatu case was representative of autumnal anticyclonic conditions with weak pressure gradients, and illustrated typical diurnal development of a convective boundary layer over a coastal plain bordered by mountain ranges, with a transition from a stable nocturnal situation to a well-mixed profile in the afternoon. The profiles show surface input of heat propagating upwards through the boundary layer during the day, as well as entrainment of heat at the top associated with shear induced turbulence and/or penetrative convection. Applying a one-dimensional model, estimates of boundary layer heat budget components were obtained for four time periods during the day. Later periods were affected by cumulus cloud development at the top of the boundary layer, resulting in significant changes in individual components. Input of sensible heat from the surface decreased, while the addition of heat to the boundary layer from both cloud condensation and advection increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shvab-Zeldovich coupling of flow variables has been used to extend Van Driest's theory of turbulent boundary-layer skin friction to include injection and combustion of hydrogen in the boundary layer. The resulting theory is used to make predictions of skin friction and heat transfer that are found to be consistent with experimental and numerical results. Using the theory to extrapolate to larger downstream distances at the same experimental conditions, it is found that the reduction in skin-friction drag with hydrogen mixing and combustion is three times that with mixing alone. In application to flow on a flat plate at mainstream velocities of 2, 4, and 6 knits, and Reynolds numbers from 3 X 10(6) to 1 x 10(8), injection and combustion of hydrogen yielded values of skin-friction drag that were less than one-half of the no-injection skin-friction drag, together with a net reduction in heat transfer when the combustion heat release in air was less than the stagnation enthalpy. The mass efficiency of hydrogen injection, as measured by effective specific impulse values, was approximately 2000 s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern stepped spillways are typically designed for large discharge capacities corresponding to a skimming flow regime for which flow resistance is predominantly form drag. The writer demonstrates that the inflow conditions have some effect on the skimming flow properties. Boundary layer calculations show that the flow properties at inception of free-surface aeration are substantially different with pressurized intake. The re-analysis of experimental results highlights that the equivalent Darcy friction factor is f similar to 0.2 in average on uncontrolled stepped Chute and f similar to 0.1 on stepped chute with pressurized intake. A simple design chart is presented to estimate the residual flow velocity, and the agreement of the calculations with experimental results is deemed satisfactory for preliminary design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Field observations of instantaneous water surface slopes in the swash zone are presented. For free-surface flows with a hydrostatic pressure distribution the surface slope is equivalent to the horizontal pressure gradient. Observations were made using a novel technique which in its simplest form consists of a horizontal stringline extending seaward from the beach face. Visual observation, still photography or video photography is then sufficient to determine the surface slope where the free-surface cuts the line or between reference points in the image. The method resolves the mean surface gradient over a cross-shore distance of 5 m or more to within +/- 0.001, or 1/20th -1/100th of typical beach gradients. In addition, at selected points and at any instant in time during the swash cycle, the water surface slope can be determined exactly to be dipping either seaward or landward. Close to the location of bore collapse landward dipping water surface slopes of order 0.05-0.1 occur over a very small region (order 0.5 m) at the blunt or convex leading edge of the swash. In the middle and upper swash the water surface slope at this leading edge is usually very close to horizontal or slightly seaward. Behind the leading edge, the water surface slope was observed to be very close to horizontal or dipping seaward at all times throughout the swash uprush. During the backwash the water surface slope was observed to be always dipping seaward, approaching the beach slope, and remained seaward until a new uprush edge or incident bore passed any particular cross-shore location of interest. The observations strongly Suggest that the swash boundary layer is subject to an adverse pressure gradient during uprush and a favourable pressure gradient during the backwash. Furthermore, assuming Euler's equations are a good approximation in the swash, the observations also show that the total fluid acceleration is negative (offshore) for almost the whole of the uprush and for the entire backwash. The observations are contrary to recent work suggesting significant shoreward directed accelerations and pressure gradients occur in the swash (i.e., delta u/delta t > 0 similar to delta p/delta x < 0), but consistent with analytical and numerical solutions for swash uprush and backwash. The results have important implications for sediment transport modelling in the swash zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper presents a new theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of slip planes in the context of crystallographic slip is determined by the normal vector, the so-called director of these surfaces. The model is applied to simulate anisotropic natural mantle convection. We compare the evolution of the director and approximately steady states of isotropic and anisotropic convection. The isotropic case has a simple steady state solution, whereas the orthotropic convection model produces a continuously evolving patterning in tile core of the convection cell which makes only a near-steady condition possible, in which the thermal boundary layer appears to be well aligned with the flow and hence as observed in seismic tomomgraphy strong anistropic.