91 resultados para Bone tumor
em University of Queensland eSpace - Australia
Resumo:
Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-IBBL into murine DCs, and monitored the ability of these recombinant DO to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DO increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DO. We also report an additive effect of 4-IBBL and receptor activator of NF-kappaB/receptor activator of NF-kappaB ligand coexpression in E7-transduced DC inummogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Objectives. Receptor activator of NF-kappa B ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappa B (RANK) in RA at sites of articular bone erosion. Methods. Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannu-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. Results. Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. Conclusions. The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.
Resumo:
The associations of volumetric (vBMD) and areal (aBMD) bone mineral density measures with prevalent cardiovascular disease (CVD) and subclinical peripheral arterial disease (PAD) were investigated in a cohort of older men and women enrolled in the Health, Aging, and Body Composition Study. Participants were 3,075 well-functioning white and black men and women (42% black, 51% women), aged 68-80 years. Total hip, femoral neck, and trochanter aBMD were measured using dual-energy X-ray absorptiometry. Quantitative computed tomography was used to evaluate spine trabecular, integral, and cortical vBMD measures in a subgroup (n = 1,489). Logistic regression was performed to examine associations of BMD measures with CVD and PAD. The prevalence of CVD (defined by coronary heart disease, PAD, cerebrovascular disease, or congestive heart failure) was 29.8%. Among participants without CVD, 10% had subclinical PAD (defined as ankle-arm index < 0.9). Spine vBMD measures were inversely associated with CVD in men (odds ratio of integral [ORintegral] = 1.34, 95% confidence interval [CI] 1.10-1.63; ORtrabecular = 1.25, 95% CI 1.02-1.53; ORcortical = 1.36, 95% CI 1.11-1.65). In women, for each standard deviation decrease in integral vBMD, cortical vBMD, or trochanter aBMD, the odds of CVD were significantly increased by 28%, 27%, and 22%, respectively. Total hip aBMD was associated with subclinical PAD in men (OR = 1.39, 95% CI 1.03-1.84) but not in women. All associations were independent of age and shared risk factors between BMD and CVD and were not influenced by inflammatory cytokines (interleukin-6 and tumor necrosis factors-alpha). In conclusion, our results provide further evidence for an inverse association between BMD and CVD in men and women. Future research should investigate common pathophysiological links for osteoporosis and CVD.
Resumo:
Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
Many cervical cancers express the E7 protein of human papillomavirus 16 as a tumor-specific Ag (TSA). To establish the role of E7-specific T cell help in CD8(+) CTL-mediated tumor regression, C57BL/6J mice were immunized with E7 protein or with a peptide (GF001) comprising a minimal CTL epitope of E7, together with different adjuvants, Immunized mice were challenged with an E7-expressing tumor cell line, EL4.E7. Growth of EL4.E7 was reduced following immunization with E7 and Quil-A (an adjuvant that induced a Th1-type response to E7) or with GF001 and Quil-A, Depletion of CD8(+) cells, but not CD4(+) cells, from an immunized animal abrogated protection, confirming that E7-specific CTL are necessary and sufficient for TSA-specific protection in this model. Immunization with E7 and Algammulin (an alum-based adjuvant) induced a Th2-like response and provided; no tumor protection. To investigate whether a Th2 T helper response to E7 could prevent the development of an E7-specific CTL-mediated protection, mice were simultaneously immunized with E7/Algammulin and GF001/Quil-A or, alternatively, were immunized with GF011/Quil-A 8 wk after immunization with E7/Algammulin, Tumor protection was observed in each case. We conclude that an established Th2 response to a TSA does not prevent the development of TSA-specific tumor protective CTL.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
Bracken fern (Pteridium spp.) produces cancer of the urinary bladder and oesophagus in grazing animals and is a suspected human carcinogen, The carcinogenic principle ptaquiloside (PT), when activated to a dienone (APT), forms DNA adducts which eventually leads to tumor. Two groups of female Sprague-Dawley rats were given a chronic dose of 3 mg APT weekly for 10 weeks either by intravenous (iv) tail vein or by intragastric (ig) route, A third group was given a weekly dose of 6 mg of APT for 3 weeks by the ig route corresponding to acute dosing. Both chronic iv and ig dosed animals showed ischemic tubular necrosis in the kidney but only iv dosed animals developed adenocarcinomas of the mammary glands. Acutely dosed ig animals produced apoptotic bodies in the liver, necrosis of blood cell precursors in the bone marrow and ischemic tubular necrosis in the kidney but they did not develop tumors, No mutations were found in the H-ras and p53 genes in the mammary glands of either the ig rats or the tumor-bearing iv rats. However, the mammary glands of a fourth group of rats, which received APT by iv and killed before tumor development, carried Pu to Pu and Pu to Py double mutations in codons 58 and 59 of H-ras. This study indicates that the route of administration plays a role in the nature of the disease expression from ptaquiloside exposure. In addition to confirming the role of APT in the PT-induced carcinogenesis our finding suggests that activation of H-ras is an early event in the PT-carcinogenesis model. (C) 1998 Academic Press.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P