93 resultados para Bone morphology
em University of Queensland eSpace - Australia
Resumo:
Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C. paucifasciatus which have been regarded previously as a single species. Cytb provided greater resolution than rrnS and will likely provide additional resolution with greater taxon sampling.
Resumo:
The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.
Resumo:
Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired. (c) 2005 Wiley-Liss, Inc.
Resumo:
Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
Phylogenies of trematodes based on characters derived from morphology and life cycles have been controversial. Here, we add molecular data to the phylogenetic study of a group of trematodes, members of the superfamily Hemiuroidea Looss, 1899. DNA sequences from the V4 domain of the nuclear small subunit (18S) rRNA gene and a matrix of morphological characters modified from a previous study were used. There was no significant incongruence between the molecular and the morphological data. However, this was probably due largely to the limited resolving power of the morphological data. Analyses support a monophyletic Hemiuroidea containing at least the families Accacoeliidae, Derogenidae, Didymozoidae, Hirudinellidae, Sclerodistomidae, Syncoeliidae, Isoparorchiidae, Lecithasteridae, and Hemiuridae. These families fall into two principal clades. One contains the first six families and the other the Hemiuridae and lecithasterine lecithasterids. The positions of the hysterolecithine lecithasterids and the Isoparorchiidae were poorly resolved. The Ptychogonimidae may be the sister group of the remaining Hemiuroidea, but there was no support from the molecular data for the placement of the Azygiidae within the superfamily. (C) 1998 Academic Press.
Resumo:
The gross morphology, histology, and ultrastructure of the thyroid gland of the koala, Phascolarctos cinereus, is described. Generally, the glands were found to contain large-diameter follicles in association with an epithelium of low height. Morphometric analysis demonstrated a high relative thyroid weight (0.3 +/- 0.2 g/kg) for koalas compared with the 0.07-0.24 g/kg typical of eutherian mammals and 0.03-0.1 g/kg found in other marsupials. The relative thyroid weight of glands (0.33 +/- 0.21 g/kg) from the coastal population (less than 28 km from the coastline) was found to be significantly higher (ANOVA: P = 0.007, significant at the 1% level) than that for glands (0.21 +/- 0.11 g/kg) of noncoastal koalas (greater than 28 km from the coastline). Follicle size was positively correlated (at the 0.1% level) with relative thyroid weight in the overall koala sample. The presence of C cells, occurring singly in the epithelial layer, was demonstrated in electron micrographs. Structural features such as low epithelial height, large follicle length and width, and large intercellular spaces in association with low concentrations of free TS (3.3 +/- 2.1 pM) and free T-3 (1.4 +/- 0.9 pM) as reported previously (Lawson et al., 1996) are consistent with an unusually low level of glandular activity in the koala thyroid even though iodine concentrations in the thyroid gland [4.7 +/- 1.6 mg/g (dry weight)] as well as leaf [0.8 +/- 0.3 mu g (dry weight)] and soil samples [3.8 mu g/g (dry weight)] from the koalas' habitat appear unremarkable. (C) 1998 Academic Press.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
This study forms part of a larger anthropological investigation of the Ngaraangbal Aboriginal Tribe's ancestral burial ground at Broadbeach, Australia. It examines the dentition, records the associated pathology in a noninvasive manner, and relates this to the likely subsistence diet of the tribe. The Broadbeach osteological collection was returned for reburial in 1985; however, radiographic and photographic records of 36 adult males were available. These form the basis of our study. The pathology noted in the study sample was compared with a representative sample (n = 38) of pre-European Aboriginal remains from throughout Queensland for verification purposes only. Rates of dental pathology and injury were calculated from the radiographic and photographic records. There was a significant rate of tooth-wear related intra-bony pathology (4.0%), moderate to severe alveolar bone loss, and heavy dental attrition, of which the mandibular posterior teeth were the most severely affected. Caries prevalence (0.8%) was low for hunter-gatherer populations. A large number of molar pulp chambers had a distinctive cruciate morphology resulting from the formation of secondary dentine and pulp stones. Injuries and abnormalities included upper central incisor avulsion (58.3%) and taurodontism. These results support the proposal that the Ngaraangbal tribe was a hunter-gatherer population subsisting on an abrasive diet that included marine foods. (C) 1998 Wiley-Liss, Inc.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P