52 resultados para Bone metabolic disease

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Crohn's disease (CD) is associated with a number of secondary conditions including osteoporosis, which increases the risk of bone fracture. The cause of metabolic bone disease in this Population is believed to be multifactorial and may include the disease itself and associated inflammation, high-close corticosteroid use, weight loss and malabsorption, a lack of exercise and physical activity, and all underlying genetic predisposition to bone loss. Reduced bone mineral density has been reported in between 5% to 80% of CD sufferers, although it is generally believed that approximately 40% of patients suffer from osteopenia and 15% from osteoporosis. Recent studies Suggest a small but significantly increased risk of fracture compared with healthy controls and, perhaps, sufferers of other gastrointestinal disorders Such as ulcerative colitis. The role of physical activity and exercise in the prevention and treatment of CD-related bone loss has received little attention, despite the benefits of specific exercises being well documented in healthy populations. This article reviews the prevalence of and risk factors for low bone mass in CD patients and examines various treatments for osteoporosis in these patients, with a particular focus on physical activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paget's disease of bone is a common condition characterized by bone pain, deformity, pathological fracture, and an increased incidence of osteosarcoma. Genetic factors play a role in the pathogenesis of Paget's disease but the molecular basis remains largely unknown. Susceptibility loci for Paget's disease of bone have been mapped to chromosome 6p21.3 (PDB1) and 18q121.1-q22 (PDB2) in different pedigrees, We have identified a large pedigree of over 250 individuals with 49 informative individuals affected with Paget's disease of bone; 31 of whom are available for genotypic analysis. The disease is inherited as an autosomal dominant trait in the pedigree with high penetrance by the sixth decade. Linkage analysis has been performed with markers at PDB1; these data show significant exclusion of linkage with log,, of the odds ratio (LOD) scores < -2 in this region. Linkage analysis of microsatellite markers from the PDB2 region has excluded linkage with this region, with a 30 cM exclusion region (LOD score < -2.0) centered on D18S42, These data confirm the genetic heterogeneity of Paget's disease of bone. Our hypothesis is that a novel susceptibility gene relevant to the pathogenesis of Paget's disease of bone lies elsewhere in the genome in the affected members of this pedigree and will be identified using a microsatellite genomewide scan followed by positional cloning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The associations of volumetric (vBMD) and areal (aBMD) bone mineral density measures with prevalent cardiovascular disease (CVD) and subclinical peripheral arterial disease (PAD) were investigated in a cohort of older men and women enrolled in the Health, Aging, and Body Composition Study. Participants were 3,075 well-functioning white and black men and women (42% black, 51% women), aged 68-80 years. Total hip, femoral neck, and trochanter aBMD were measured using dual-energy X-ray absorptiometry. Quantitative computed tomography was used to evaluate spine trabecular, integral, and cortical vBMD measures in a subgroup (n = 1,489). Logistic regression was performed to examine associations of BMD measures with CVD and PAD. The prevalence of CVD (defined by coronary heart disease, PAD, cerebrovascular disease, or congestive heart failure) was 29.8%. Among participants without CVD, 10% had subclinical PAD (defined as ankle-arm index < 0.9). Spine vBMD measures were inversely associated with CVD in men (odds ratio of integral [ORintegral] = 1.34, 95% confidence interval [CI] 1.10-1.63; ORtrabecular = 1.25, 95% CI 1.02-1.53; ORcortical = 1.36, 95% CI 1.11-1.65). In women, for each standard deviation decrease in integral vBMD, cortical vBMD, or trochanter aBMD, the odds of CVD were significantly increased by 28%, 27%, and 22%, respectively. Total hip aBMD was associated with subclinical PAD in men (OR = 1.39, 95% CI 1.03-1.84) but not in women. All associations were independent of age and shared risk factors between BMD and CVD and were not influenced by inflammatory cytokines (interleukin-6 and tumor necrosis factors-alpha). In conclusion, our results provide further evidence for an inverse association between BMD and CVD in men and women. Future research should investigate common pathophysiological links for osteoporosis and CVD.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador: