26 resultados para Bone marrow cells
em University of Queensland eSpace - Australia
Resumo:
Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell-deficient mu MT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatlibility complex antigens. We demonstrate that acute GVHD is initially augmented in mu MT recipients relative to wild-type recipients (mortality: 85% vs 44%, P < .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-110 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.
Resumo:
The aims of this study were to establish the nutritional status of children pre- BMT and to determine whether predictive methods of assessing nutritional status and resting energy expenditure ( REE) are accurate in this population. We analysed the body cell mass ( BCM) ( n = 26) and REE ( n = 24) in children undergoing BMT. BCM was adjusted for height ( BCM/ HTp) and expressed as a Z score to represent nutritional status. To determine whether body mass index ( BMI) was indicative of nutritional status in children undergoing BMT, BMI Z scores were compared to the reference method of BCM/ HTp Z scores. Schofield predictive equations of basal metabolic rate ( BMR) were compared to measured REE to evaluate the accuracy of the predictive equations. The mean BCM/ HTp Z score for the subject population was -1.09 +/- 1.28. There was no significant relationship between BCM/ HTp Z score and BMI Z score ( r = 0.34; P > 0.05); however there was minimal difference between measured REE and predicted BMR ( bias = -11 +/- 149 kcal/ day). The results of this study demonstrate that children undergoing BMT may have suboptimal nutritional status and that BMI is not an accurate indication of nutritional status in this population. However, Schofield equations were found to be suitable for representing REE in children pre- BMT.
Resumo:
A defining property of murine hematopoietic stein cells (HSCs) is low fluorescence after staining with Hoechst 33342 and Rhodamine 123. These dyes have proven to be remarkably powerful tools in the purification and characterization of HSCs when used alone or in combination with antibodies directed against stem cell epitopes. Hoechst low cells are described as side population (SP) cells by virtue of their typical profiles in Hoechst red versus Hoechst blue bivariate fluorescent-activated cell sorting dot plots. Recently, excitement has been generated by the findings that putative stem cells from solid tissues may also possess this SP phenotype. SP cells have now been isolated from a wide variety of mammalian tissues based on this same dye efflux phenomenon, and in many cases this cell population has been shown to contain apparently multipotent stem cells. What is yet to be clearly addressed is whether cell fusion accounts for this perceived SP multipotency. Indeed, if low fluorescence after Hoechst staining is a phenotype shared by hematopoietic and organ-specific stem cells, do all resident tissue SP cells have bone marrow origins or might the SP phenotype be a property common to all stem cells? Subject to further analysis, the SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell-surface markers and may have broad-ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.
Resumo:
We report the use of an Internet-based videophone to support a child undergoing bone marrow transplantation (BMT). Over the Christmas period, an eight-year-old boy with an underlying diagnosis of attention-deficit/hyperactivity disorder (ADHD) and a history of absconding and aggressive non-compliant behaviour was treated by BMT. We installed an Internet-based videophone in the patient's hospital room two days post-transplant. A second videophone was installed in the patient's home and used the existing home telephone line. In all, 14 videophone calls were made over a nine-day period. The videophone improved interfamily social and emotional support, and appeared to reduce some of the inherent anxiety and distress resulting from paediatric bone marrow transplantation.
Resumo:
Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
Resumo:
Objectives: The aim of the study was to characterise the population pharmacokinetics (popPK) properties of itraconazole (ITRA) and its active metabolite hydroxy-ITRA in a representative paediatric population of cystic fibrosis (CF) and bone marrow transplant (BMT) patients. The goals were to determine the relative bioavailability between the two oral formulations, and to explore improved dosage regimens in these patients. Methods: All paediatric patients with CF taking oral ITRA for the treatment of allergic bronchopulmonary aspergillosis and patients undergoing BMT who were taking ITRA for prophylaxis of any fungal infection were eligible for the study. A minimum of two blood samples were drawn after the capsules and also after switching to oral solution, or vice versa. ITRA and hydroxy-ITRA plasma concentrations were measured by HPLC[1]. A nonlinear mixed-effect modelling approach (NONMEM 5.1.1) was used to describe the PK of ITRA and hydroxy-ITRA simultaneously. Simulations were used to assess dosing strategies in these patients. Results: Forty-nine patients (29CF, 20 BMT) were recruited to the study who provided 227 blood samples for the population analysis. A 1-compartment model with 1st order absorption and elimination best described ITRA kinetics, with 1st order conversion to hydroxy-ITRA. For ITRA, the apparent clearance (ClItra/F) and volume of distribution (Vitra/F) was 35.5L/h and 672L, respectively; the absorption rate constant for the capsule formulation was 0.0901 h-1 and for the oral solution formulation it was 0.959 h-1. The capsule comparative bioavailability (vs. solution) was 0.55. For hydroxy-ITRA, the apparent volume of distribution and clearance were 10.6 L and 5.28 L/h, respectively. Of several screened covariates only allometrically scaled total body weight significantly improved the fit to the data. No difference between the two populations was found. Conclusion: The developed popPK model adequately described the pharmacokinetics of ITRA and hydroxy-ITRA in paediatric patients with CF and patients undergoing BMT. High inter-patient variability confirmed previous data in CF[2], leukaemia and BMT[3] patients. From the population model, simulations showed the standard dose (5 mg/kg/day) needs to be doubled for the solution formulation and even 4 times more given of the capsules to achieve an adequate target therapeutic trough plasma concentration of 0.5 mg/L[4] in these patients.
Resumo:
Objective: The purpose of this study was to grow artificial blood vessels for autologous transplantation as arterial interposition grafts in a large animal model (dog). Method and results: Tubing up to 250 mm long, either bare or wrapped in biodegradable polyglycolic acid (Dexon) or nonbiodegradable polypropylene (Prolene) mesh, was inserted in the peritoneal or pleural cavity of dogs, using minimally invasive techniques, and tethered at one end to the wall with a loose suture. After 3 weeks the tubes and their tissue capsules were harvested, and the inert tubing was discarded. The wall of living tissue was uniformly 1-1.5 mm thick throughout its length, and consisted of multiple layers of myofibroblasts and matrix overlaid with a single layer of mesothelium. The myofibroblasts stained for a-smooth muscle actin, vimentin, and desmin. The bursting strength of tissue tubes with no biodegradable mesh scaffolds was in excess of 2500 mm Hg, and the suture holding strength was 11.5 N, both similar to that in dog carotid and femoral arteries. Eleven tissue tubes were transplanted as interposition grafts into the femoral artery of the same dog in which they were grown, and were harvested after 3 to 6.5 months. Eight remained patent during this time. At harvest, their lumens were lined with endothelium-like cells, and wall cells stained for alpha-actin, smooth muscle myosin, desmin and smoothelin; there was also a thick adventitia containing vasa vasorum. Conclusion: Peritoneal and pleural cavities of large animals can function as bioreactors to grow myofibroblast tubes for use as autologous vascular grafts.