80 resultados para Bone fracture
em University of Queensland eSpace - Australia
Resumo:
Crohn's disease (CD) is associated with a number of secondary conditions including osteoporosis, which increases the risk of bone fracture. The cause of metabolic bone disease in this Population is believed to be multifactorial and may include the disease itself and associated inflammation, high-close corticosteroid use, weight loss and malabsorption, a lack of exercise and physical activity, and all underlying genetic predisposition to bone loss. Reduced bone mineral density has been reported in between 5% to 80% of CD sufferers, although it is generally believed that approximately 40% of patients suffer from osteopenia and 15% from osteoporosis. Recent studies Suggest a small but significantly increased risk of fracture compared with healthy controls and, perhaps, sufferers of other gastrointestinal disorders Such as ulcerative colitis. The role of physical activity and exercise in the prevention and treatment of CD-related bone loss has received little attention, despite the benefits of specific exercises being well documented in healthy populations. This article reviews the prevalence of and risk factors for low bone mass in CD patients and examines various treatments for osteoporosis in these patients, with a particular focus on physical activity.
Resumo:
The basic morphology of the skeleton is determined genetically, but its final mass and architecture are modulated by adaptive mechanisms sensitive to mechanical factors. When subjected to loading, the ability of bones to resist fracture depends on their mass, material properties, geometry and tissue quality. The contribution of altered bone geometry to fracture risk is unappreciated by clinical assessment using absorptiometry because it fails to distinguish geometry and density. For example, for the same bone area and density, small increases in the diaphyseal radius effect a disproportionate influence on torsional strength of bone. Mechanical factors are clinically relevant because of their ability to influence growth, modeling and remodeling activities that can maximize, or maintain, the determinants of fracture resistance. Mechanical loads, greater than those habitually encountered by the skeleton, effect adaptations in cortical and cancellous bone, reduce the rate of bone turnover, and activate new bone formation on cortical and trabecular surfaces. In doing so, they increase bone strength by beneficial adaptations in the geometric dimensions and material properties of the tissue. There is no direct evidence to demonstrate anti-fracture efficacy for mechanical loading, but the geometric alterations engendered undoubtedly increase the structural properties of bone as an organ, increasing the resistance to fracture. Like all interventions, issues of safety also arise. Physical activities involving high strain rates, heavy lifting or impact loading may be detrimental to the joints, leading to osteoarthritis; may stimulate fatigue damage leading with some to stress fractures; or may interact pharmaceutical interventions to increase the rate of microdamage within cortical or trabecular bone.
Resumo:
Indicators are valuable tools used to measure progress towards a desired health outcome. Increased awareness of the public health burden due to injury has lead to a concomitant interest in monitoring the impact of national initiatives that aim to reduce the size of the burden. Several injury indicators have now been proposed. This study examines the ability of each of the suggested indicators to reflect the nature and extent of the burden of non-fatal injury. A criterion validity, population-based, prospective cohort study was conducted in Brisbane, a sub-tropical Metropolitan City on the eastern seaboard of Australia, over a 12-month period between 1 January and 31 December 1998. Neither the presence of a long bone fracture nor the need for hospitalisation for 4 or more days were sensitive or specific indicators for 'serious' or major injury as defined by the 'Gold Standard' Injury Severity Score (ISS). Subsequent analysis, using other public health outcome measures demonstrated that the major component of the illness burden of injury was in fact due to 'minor' not serious injury. However, the suggested indicators demonstrated low sensitivity and specificity for these outcomes as well. The results of the study support the need to include at least all hospitalisations in any population-based measure of injury and not attempt to simplify the indicator to a more convenient measure aimed at identifying just those cases of,serious' injury.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P
Resumo:
We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
Paget's disease of bone is a common condition characterized by bone pain, deformity, pathological fracture, and an increased incidence of osteosarcoma. Genetic factors play a role in the pathogenesis of Paget's disease but the molecular basis remains largely unknown. Susceptibility loci for Paget's disease of bone have been mapped to chromosome 6p21.3 (PDB1) and 18q121.1-q22 (PDB2) in different pedigrees, We have identified a large pedigree of over 250 individuals with 49 informative individuals affected with Paget's disease of bone; 31 of whom are available for genotypic analysis. The disease is inherited as an autosomal dominant trait in the pedigree with high penetrance by the sixth decade. Linkage analysis has been performed with markers at PDB1; these data show significant exclusion of linkage with log,, of the odds ratio (LOD) scores < -2 in this region. Linkage analysis of microsatellite markers from the PDB2 region has excluded linkage with this region, with a 30 cM exclusion region (LOD score < -2.0) centered on D18S42, These data confirm the genetic heterogeneity of Paget's disease of bone. Our hypothesis is that a novel susceptibility gene relevant to the pathogenesis of Paget's disease of bone lies elsewhere in the genome in the affected members of this pedigree and will be identified using a microsatellite genomewide scan followed by positional cloning.
Resumo:
Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.
Resumo:
Background and purpose: Trans-Tasman Radiation Oncology Group 96.05 is a prospective randomized controlled trial comparing a single 8 Gy with 20 Gy in five fractions of radiotherapy (RT) for neuropathic pain due to bone metastases. This paper summarizes the quality assurance (QA) activities for the first 234 patients (accrual target 270). Materials and methods: Independent audits to assess compliance with eligibility/exclusion criteria and appropriateness of treatment of the index site were conducted after each cohort of approximately 45 consecutive patients. Reported serious adverse events (SAEs) in the form of cord/cauda equina compression or pathological fracture developing at the index site were investigated and presented in batches to the Independent Data Monitoring Committee. Finally, source data verification of the RT prescription page and treatment records was undertaken for each of the first 234 patients to assess compliance with the protocol. Results: Only one patient was found conclusively not to have genuine neuropathic pain, and there were no detected 'geographical misses' with RT fields. The overall rate of detected infringements for other eligibility criteria over five audits (225 patients) was 8% with a dramatic improvement after the first audit. There has at no stage been a statistically significant difference in SAEs by randomization arm. There was a 22% rate of RT protocol variations involving ten of the 14 contributing centres, although the rate of major dose violations (more than +/- 10% from protocol dose) was only 6% with no statistically significant difference by randomization arm (P = 0.44). Conclusions: QA auditing is an essential but time-consuming component of RT trials, including those assessing palliative endpoints. Our experience confirms that all aspects should commence soon after study activation. Crown Copyright (C) 2003 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Background and purpose: Despite numerous randomized trials investigating radiotherapy (RT) fractionation schedules for painful bone metastases, there are very few data on RT for bone metastases causing pain with a neuropathic component. The Trans-Tasman Radiation Oncology Group undertook a randomized trial comparing the efficacy of a single 8 Gy (8/1) with 20 Gy in 5 fractions (20/5) for this type of pain. Materials and methods: Eligible patients had radiological evidence of bone metastases from a known malignancy with no change in systemic therapy within 6 weeks before or anticipated within 4 weeks after RT, no other metastases along the distribution of the neuropathic pain and no clinical or radiological evidence of cord/cauda equina compression. All patients gave written informed consent. Primary endpoints were pain response within 2 months of commencement of RT and time to treatment failure (TTF). The hypothesis was that 8/1 is at least as effective as 20/5 and the planned sample size was 270 patients. Results: Between February 1996 and December 2002, 272 patients were randomized (8/1:20/5 = 137:135) from 15 centres (Australia 11, New Zealand 3, UK 1). The commonest primary cancers were lung (31%), prostate (29%) and breast (8%); index sites were spine (89%), rib (9%), other (2%); 72% of patients were males and the median age was 67 (range 2989). The median overall survival (95% CI) for all randomized patients was 4.8 mo (4.2-5.7 mo). The intention-to-treat overall response rates (95% Cl) for 8/1 vs 20/5 were 53% (45-62%) vs 61% (53-70%), P = 0.18. Corresponding figures for complete response were 26% (18-34%) vs 27% (19-35%), P = 0.89. The estimated median TTFs (95% CI) were 2.4 mo (2.0-3.3 mo) vs 3.7 mo (3.1-5.9 mo) respectively. The hazard ratio (95% Cl) for the comparison of TTF curves was 1.35 (0.99-1.85), log-rank P = 0.056. There were no statistically significant differences in the rates of re-treatment, cord compression or pathological fracture by arm. Conclusions: 8/1 was not shown to be as effective as 20/5, nor was it statistically significantly worse. Outcomes were generally poorer for 8/1, although the quantitative differences were relatively small. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Context and Objective: Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha 1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. Design: The study was designed as a prospective population-based cohort investigation. Subjects: Six hundred seventy-seven postmenopausal women of Caucasian background, aged 70 +/- 7 yr (mean +/- SD), have been followed for up to 14 yr. Sixty-nine women had sustained a hip fracture during the period. Main Outcome: Atraumatic hip fractures were prospectively identified through radiologists' reports. Bone mineral density (BMD) at the hip and lumbar spine was measured by dual-energy x-ray absorptiometry. Genotypes: The TaqI and SpI COLIA1 polymorphisms of the VDR and COLIA1 genes were determined. Using the Single Nucleotide Polymorphism database, VDR TT, Tt, and tt genotypes were coded as TT, TC, and CC, whereas COLIA1 SS, Ss, and ss were coded as GG, GT, and TT. Results: Women with VDR CC genotype (16% prevalence) and COLIA1 TT genotype (5% prevalence) had an increased risk of hip fracture [odds ratio (OR) associated with CC, 2.6; 95% confidence interval (CI), 1.2-5.3; OR associated with TT, 3.8; 95% CI, 1.3-10.8] after adjustment for femoral neck BMD (OR, 3.4 per SD; 95% CI, 2.3-5.0) and age (OR, 1.4 per 5 yr; 95% CI, 1.1-1.7). Approximately 20 and 12% of the liability to hip fracture was attributable to the presence of the CC genotype and TT genotype, respectively. Conclusion: The VDR CC genotype and COLIA1 TT genotype were associated with increased hip fracture risk in Caucasian women, and this association was independent of BMD and age.
Resumo:
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fracture healing is a complex process regulated by numerous growth and adhesive factors expressed at specific stages during healing. The naturally occurring, cell surface-expressed sugar, heparan sulfate (HS), is known to bind to and potentiate the effects of many classes of growth factors, and as such, may be a potential candidate therapy for enhancing bone repair. This study investigated the local application of bone-derived HS in the repair of rat femoral fractures. After 2 weeks, there was a significant increase in the callus size of rats administered with 5 mu g HS compared to the control and 50 mu g HS groups, presumably due to increased trabecular bone volume rather than increased cartilage production. In addition, 5 mu g HS increased the expression of ALP, Runx2, FGF-1, IGF-II, TGF-beta 1, and VEGF. It is hypothesized that these increases resulted from changes in HS-mediated receptor/ligand interactions that increase local growth factor production to augment bone formation. The findings of this study demonstrate the anabolic potential of HS in bone repair by recruiting and enhancing the production of endogenous growth factors at the site of injury. (c) 2006 Orthopaedic Research Society.
Resumo:
Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. Introduction: The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Materials and Methods: Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). Results: BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. Conclusions: There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in part, by a draw on cortical bone to meet the mineral demands of the expanding skeleton resulting in a temporary increased fracture risk.