70 resultados para Bone Marrow Cells

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the source of smooth muscle-like cells during vascular healing, C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) nucleated bone marrow cells from congenic (Ly 5.1) male donors. Successful repopulation (88.4 +/- 4.9%) by donor marrow was demonstrated in the female mice by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody after 4 weeks. The arteries of the female mice were then subjected to two types of insult: (1) The iliac artery was scratch-injured by 5 passes of a probe causing severe medial damage. After 4 weeks, the arterial lumen was obliterated by a cell-rich neointima, with cells containing a smooth muscle actin present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y-chromosome-specific probe. (2) In an organized arterial thrombus formed by inserting an 8-0 silk suture into the left common carotid artery, donor cells staining with alpha smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage, Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell-deficient mu MT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatlibility complex antigens. We demonstrate that acute GVHD is initially augmented in mu MT recipients relative to wild-type recipients (mortality: 85% vs 44%, P < .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-110 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a simple four parameter population balance model of in vivo neutrophil formation following bone marrow rescue therapy. The model is used to predict the number and type of neutrophil progenitors required to abrogate the period of severe neutropenia that normally follows a bone marrow transplant. The estimated total number of 5 billion neutrophil progenitors is consistent with the value extrapolated from a human trial. The model provides a basis for designing ex vivo expansion protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lengths of silastic tubing were inserted into the peritoneal cavity of rats or rabbits. By two weeks the free-floating implants had become covered by a capsule consisting of several layers of macrophage-derived myofibroblasts and collagen matrix overlaid by a single layer of mesothelial cells. The tubing was removed from the harvested implant and the tissue everted. This now resembled an artery with an inner lining of mesothelial cells (the intima), a media of myofibroblasts, and an outer collagenous adventitia. The tube of living tissue was grafted by end-to-end anastomoses into the transected carotid artery or abdominal aorta of the same animal in which the tissue had been grown, where it remained parent for four months and developed structures resembling elastic lamellae, The myofibroblasts developed a high volume fraction of myofilaments and became responsive to contractile and relaxing agents similar to smooth muscle cells of the adjacent artery wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-obese diabetic (NOD) mouse is a unique and invaluable model of autoimmune disease, in particular type I diabetes. Bone marrow transplantation as a therapy for type I diabetes has been explored in NOD mice. NOD mice require higher doses of conditioning irradiation for successful allogeneic bone marrow transplantation, suggesting that NOD hematopoietic cells are radioresistant compared to those of other mouse strains. However, studies of hematopoietic reconstitution in NOD mice are hampered by the lack of mice bearing a suitable cell-surface marker that would allow transferred cells or their progeny to be distinguished. In order to monitor hematopoietic reconstitution in NOD mice we generated congenic NOD mice that carry the alternative allelic form of the pan-leukocyte alloantigen CD45. Following irradiation and congenic bone marrow transplantation, we found that the myeloid lineage was rapidly reconstituted by cells of donor origin but substantial numbers of recipient T lymphocytes persisted even after supra-lethal irradiation. This indicates that radiation resistance in the NOD hematopoietic compartment is a property primarily of mature T lymphocytes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival of bone marrow transplant recipients requiting mechanical ventilation is poor but improving. This study reports a retrospective audit of all haematopoietic stem cell transplant (HSCT) recipients requiring mechanical ventilation at an Australian institution over a period spanning 11 years from 1988 to 1998. Recipients of autologous transplants are significantly less likely to require mechanical ventilation than recipients of allogeneic transplants. Of 50 patients requiring mechanical ventilation, 28% survived to discharge from the intensive care unit, 20% to 30 days post-ventilation, 18% to discharge from hospital and 12% to six months post-ventilation. Risk factors for mortality in the HSCT recipient requiting mechanical ventilation include renal, hepatic and cardiovascular insufficiency and greater severity of illness. Mechanical ventilation of HSCT recipients should not be regarded as futile therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.