21 resultados para Body, human
em University of Queensland eSpace - Australia
Resumo:
As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.
Resumo:
This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.
Resumo:
We studied inheritance at three microsatellite loci in eight F-1 and two F-2 families of the body (clothes) louse of humans, Pediculus humanus. The alleles of heterozygous female-parents were always inherited in a Mendelian fashion in these families. Alleles from heterozygous male-parents, however, were inherited in two different ways: (i) in a Mendelian fashion and (ii) in a non-Mendelian fashion, where males passed to their offspring only one of their two alleles, that is, 100% nonrandom transmission. In male body lice, where there was non-Mendelian inheritance, the paternally inherited set of alleles was eliminated. We interpret this pattern of inheritance as evidence for extreme transmission ratio distortion of paternal alleles in this species.
Resumo:
Relationships between cadmium (Cd) body burden, kidney function and coumarin metabolism were investigated using two groups of 197 and 200 healthy Thais with men and women in nearly equal numbers. A mean age of one group was 30.5 years and it was 39.3 years for the other group. Of 397, 20 subjects (5%) excreted urine Cd between 1.4 mug/g and 3.8 mug/g creatinine and these subjects faced 10-15% increase in the probability of having abnormal urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG-uria). The prevalence of NAG-uria varied with Cd body burden in a dose-dependent manner (chi(2) = 22, P < 0.008). Also NAG-nuria was one of the three kidney effect markers tested that showed the greatest strength of correlation with urine Cd in both men and women (r = 0.48 P < 0.001). In addition, urine Cd excretion of men and women showed a positive correlation (r = 0.46 to 0.54. P < 0.001) with urine 7-hydroxycoumarin (7-OHC) excretion which was used as a marker of liver cytochrome P450 2A6 (CYP2A6) enzyme activity. Urinary CA excretion accounted for 25% of the total variation in urine 7-OHC excretion (P < 0.001). These data suggest that Cd may increase the expression of CYP2A6 in liver, resulting in enhanced coumarin metabolism in subjects with high Cd body burden. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In humans, a polymorphic gene encodes the drug-metabolizing enzyme NATI (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NATI is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5'non-coding region of NATI. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NATI expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9-11-fold in a luciferase reporter assay, while the other isoforrns were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NATI transcripts may contribute to the variation in NATI activity in vivo.
Resumo:
The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Enlarged glomerular size is a feature of focal segmental glomerulosclerosis, obesity-related glomerulopathy, diabetic nephropathy, and hypertension. The distribution of glomerular volumes within different cortical zones and glomerular volume alterations with age and obesity may contribute to understanding the evolution of these diseases. We analyzed the distributions of volumes of individual glomeruli in the superficial, middle, and juxtamedullary cortex of normal human kidneys using the disector/Cavalieri method. Volumes (V-glom) of 720 nonsclerotic glomeruli (30 per kidney, 10 per zone) were estimated in autopsy kidneys of 24 American men, 12 aged 20 to 30 yr and 12 aged 51 to 69 yr. Black and white individuals were represented equally. The range of individual V-glom within subjects varied from two- to eight-fold. There were no significant zonal differences in V-glom in the young or those with body surface area (BSA) <= 2.11 m(2). In contrast, superficial glomeruli in the older age group, in those with BSA > 2.11 m(2), and in white subjects were significantly larger than juxtamedullary glomeruli. Black subjects tended toward larger V-glom than white subjects, and this difference was significant and most marked in the juxtamedullary zone and independent of age, BSA, and glomerular number. There is a wide range in individual V-glom in adults. BSA, race, and age independently influence V-glom different zones of the renal cortex. These findings might reflect processes of aging and susceptibility factors to renal disease.
Resumo:
Diabetic retinopathy and acromegaly are diseases associated with excess action of GH and its effector IGF-1, and there is a need for improved therapies. We have designed all optimised 2'-O-(2-methoxyethyl)-modified phosphorothioate oligodeoxynucleotide, ATL 227446, and demonstrated its ability to Suppress GH receptor mRNA in vitro. Subcutaneous injections of ATL 227446 reduced GH receptor mRNA levels, GH binding activity and serum IGF-1 levels in mice after seven days of closing. The reduction in serum IGF-1 could be sustained for over tell weeks of dosing at therapeutically relevant levels, during which there was also a significant decrease in body weight gain in antisense-treated mice relative to saline and mismatch control-treated mice. The findings indicate that administration of an antisense oligonucleotide to the GH receptor may be applicable to human diseases in which suppression of GH action provides therapeutic benefit.
Resumo:
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.
Resumo:
Previous research has shown that the postural configuration adopted by a subject, such as active leaning, influences the postural response to an unpredictable support surface translation. While those studies have examined large differences in postural conditions, it is of additional interest to examine the effects of naturally occurring changes in standing posture. Thus, it was hypothesized that the normal postural sway observed during quiet standing would affect the responses to an unpredictable support surface translation. Seventeen young adults stood quietly on a moveable platform and were perturbed in either the forward or backward direction when the location of the center of pressure (COP) was either 1.5 standard deviations anterior or posterior to the mean baseline COP signal. Postural responses, in the form of electromyographic (EMG) latencies and amplitudes, were recorded from lower limb and trunk muscles. When the location of the COP at the time of the translation was in the opposite, as compared to the same, direction as the upcoming translation, there was a significantly earlier onset of the antagonists (10-23%, i.e. 15-45 ms) and a greater EMG amplitude (14-39%) in four of the six recorded muscles. Stepping responses were most frequently observed during trials where the position of the COP was opposite to the direction of the translation. The results support the hypothesis that postural responses to unpredictable support surface translations are influenced by the normal movements of postural sway. The results may help to explain the large variability of postural responses found between past studies.