7 resultados para Birds - Evolution

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Archaeopteryx may be envisaged as an occasional or opportunistic flier that maintained an essentially dinosaurian life style on the shore but took to the air when circumstances were favourable. Such an interpretation is fully consistent with what is known of the anatomy, the taphonomy and the habitat of Archaeopteryx.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competition over access to food has led to the evolution of a variety of exaggerated visual and vocal displays in altricial nestling birds. Precocial chicks that are fed by their parents also vary widely in appearance ranging from those with inconspicuous coloration to those with brightly colored bills, fleshy parts, and plumes. These ornaments are lost by the end of the period of parental dependence, suggesting they function in competition over parental care. We use a comparative approach to evaluate which ecological or life-history variables may have favored the evolution of conspicuous ornamentation in precocial chicks. We compiled data on chick morphology, ecology, and social organization of species in the Family Rallidae, a group with highly variable downy chicks. Chick ornamentation in the form of brightly colored bills, fleshy patches, or plumes is observed in 36 of 97 species for which downy chicks are described. Phylogenetic reconstructions suggest that nonornamentation is the ancestral state. Chick ornamentation has evolved multiple times within the Rallidae and is significantly associated with large clutch sizes and polygamous mating systems. Chick ornamentation was also weakly associated with adult ornamentation and adult dimorphism. We argue that these results support the hypothesis that lineages with higher levels of sibling competition are more likely to evolve ornamented chicks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than one hundred years ago, Grant Allen suggested that colour vision in primates, birds and insects evolved as an adaptation for foraging on colourful advertisements of plants-fruits and flowers. Recent studies have shown that well developed colour vision appeared long before fruits and flowers evolved. Thus, colour vision is generally beneficial for many animals, not only for those eating colourful food. Primates are the only placental mammals that have trichromatic colour vision. This may indicate either that trichromacy is particularly useful for primates or that primates are unique among placental mammals in their ability to utilise the signals of three spectrally distinct types of cones or both. Because fruits are an important component of the primate diet, primate trichromacy could have evolved as a specific adaptation for foraging on fruits. Alternatively, primate trichromacy could have evolved as an adaptation for many visual tasks. Comparative studies of mammalian eyes indicate that primates are the only placental mammals that have in their retina a pre-existing neural machinery capable of utilising the signals of an additional spectral type of cone. Thus, the failure of non-primate placental mammals to evolve trichromacy can be explained by constraints imposed on the wiring of retinal neurones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Birds show striking interspecific variation in their use of carotenoid-based coloration. Theory predicts that the use of carotenoids for coloration is closely associated with the availability of carotenoids in the diet but, although this prediction has been supported in single-species studies and those using small numbers of closely related species, there have been no broad-scale quantitative tests of the link between carotenoid coloration and diet. Here we test for such a link using modern comparative methods, a database on 140 families of birds and two alternative avian phylogenies. We show that carotenoid pigmentation is more common in the bare parts (legs, bill and skin) than in plumage, and that yellow coloration is more common than red. We also show that there is no simple, general association between the availability of carotenoids in the diet and the overall use of carotenoid-based coloration. However, when we look at plumage coloration separately from bare part coloration, we find there is a robust and significant association between diet and plumage coloration, but not between diet and bare part coloration. Similarly, when we look at yellow and red plumage colours separately, we find that the association between diet and coloration is typically stronger for red coloration than it is for yellow coloration. Finally, when we build multivariate models to explain variation in each type of carotenoid-based coloration we find that a variety of life history and ecological factors are associated with different aspects of coloration, with dietary carotenoids only being a consistent significant factor in the case of variation in plumage. All of these results remain qualitatively unchanged irrespective of the phylogeny used in the analyses, although in some cases the precise life history and ecological variables included in the multivariate models do vary. Taken together, these results indicate that the predicted link between carotenoid coloration and diet is idiosyncratic rather than general, being strongest with respect to plumage colours and weakest for bare part coloration. We therefore suggest that, although the carotenoid-based bird plumage may a good model for diet-mediated signalling, the use of carotenoids in bare part pigmentation may have a very different functional basis and may be more strongly influenced by genetic and physiological mechanisms, which currently remain relatively understudied.

Relevância:

30.00% 30.00%

Publicador: