2 resultados para Biomedical monitoring

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioelectrical impedance measurements are widely used for the study of body composition. Commonly measurements are made at 50 kHz to estimate total body water or at low frequencies (< 10 kHz) to estimate extracellular fluid volume. These measurements can be obtained as single measurements at discrete frequencies, or as fitted data interpolated from plots of measurements made at multiple frequencies. This study compared single frequency and multiple frequency (MF) measurements taken in the intensive care environment. MF bioimpedance (4-1000 kHz) was measured on an adult with and without cardiorespiratory monitoring, and on babies in the neonatal intensive care unit. Measurements obtained at individual frequencies were plotted against frequency and examined for the presence of outlying points. Fitted data for measurements obtained at 5 kHz and 50 kHz with and without cardiorespiratory monitoring were compared. Significant artefacts were detected in measurements at approximately 50 kHz and at integral divisions of this frequency as a result of interference from cardiorespiratory monitors. Single frequency measurements taken at these frequencies may be subject to errors that would be difficult to detect without the aid of information obtained from MF measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse Transit Time (PTT) measurement has showed potential in non-invasive monitoring of changes in blood pressure. In children, the common peripheral sites used for these studies are a finger or toe. Presently, there are no known studies conducted to investigate any possible physiologic parameters affecting PTT measurement at these sites for children. In this study, PTT values of both peripheral sites were recorded from 64 children in their sitting posture. Their mean age with standard deviation (SD) was 8.2 2.6years (ranged 3 to 12years). Subjects' peripheries path length, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were measured to investigate any contributions to PTT measurement. The peripheral pulse timing characteristic measured by photoplethysmography (PPG) shows a 59.5 8.5ms (or 24.8 0.4%) difference between the two peripheries (p