22 resultados para Biology and Genetics
em University of Queensland eSpace - Australia
Resumo:
We examined whether there are crosscultural differences in the magnitude of genetic and environmental contributions to risk of becoming a regular smoker and of persistence in smoking in men and women. Standard methods of epidemiologic and genetic analysis were applied to questionnaire data on history of cigarette use obtained from large samples of male and female like-sex twins from three different countries: Australia (N = 2284 pairs), Sweden (N = 8651 pairs), and Finland (N = 10,948 pairs). Samples were subdivided into three age groups (AG), 18-25 years, 26-35 years, and 36-46 years of age. The magnitude of genetic influence for lifetime smoking was found to be consistent across country and AG for women (46%) and men (57%), and estimates of the contribution from environmental influences shared by twin and co-twin could be equated across all countries by AG for the women (from youngest to oldest AG: 45%, 35%, and 26%), but not for men, with separate estimates obtained for the Scandinavian (33%, 29%, and 19%) and the Australian men (26%, 9%, and 11 %). There was no evidence for an important role for shared environmental influences on persistent smoking, and the genetic contribution was found to be consistent in magnitude in men and women, and the same across country and AG (52%). There are strong genetic influences on smoking behavior, and that risk of becoming a smoker (but not persistence in smoking) may be modified by experiences shared by twins that differ by AG and, at least for men, cultural background.
Resumo:
The biology of Paryphanta busbyi watti, an endangered carnivorous land snail, was studied mostly by following large juvenile and adult snails with harmonic radar. The snails are nocturnally active and most (79%) hide during the day under leaf litter or in dense vegetation. Fecal analysis showed that the diet is primarily earthworms, but some cannibalism of smaller snails occurs. Empty shells appear to be an additional source of dietary calcium. Mating occurred most frequently between April and July. Mating snails stayed together for 4-7 days, and each pair reversed their positions at least twice. Four snails were first found mating 151-1240 d after they acquired adult shells, and 7 snails were observed mating a second time after 66-298 d. We found 8 nests and observed 6 snails ovipositing; 5 snails laid eggs in holes they dug and one laid eggs in a crevice between rocks. In 2 instances, oviposition was recorded 52 and 140 d after mating. Snails were estimated to lay on average similar to17.5 eggs per year in 3-5 clutches. Most oviposition was observed in August/September, but some occurred between November and February. Of the snails that died, pigs killed 13.6% and humans inadvertently killed another 13.6%. Other snails died from unknown causes mostly during the drier and warmer months, from November to April. This large land snail survives in the presence of introduced predators, but some life history traits could predispose it to a rapid decline in numbers if new predators arrive.
Resumo:
The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).
Resumo:
The biology and phenology of the eriophyid mite, Floracarus perrepae Knihinicki and Boczek,a potential biological control agent of Lygodium microphyllum (Cav.) R. Br., was studied in its native range - Queensland, Australia. F. perrepae forms leaf roll galls oil tile subpinnae of L. microphyllum. It has a simple biology, with females and males produced throughout the year. Tile Population was female biased at 10.5 to 1. The immature development time was 8.9 ± 0.1 and 7.0 ± 0.1 days; adult longevity was 30.6 ± 1.6 and 19.4 ± 1.2 days and mean fecundity per female was 54.5 ± 3.2 and 38.5 ± 1.6 eggs at 21 and 26 ° C, all respectively. Field studies showed that tile mite was active year round, with populations peaking when temperatures were cool and soil moisture levels were highest. Two species of predatory mites, Tarsonemus sp. and a species of Tydeidae, along with the pathogen Hirsutella thompsonii, had significant effects oil all life stages of F. perrepae. Despite high levels of predators and the pathogen, F. perrepae caused consistent damage to L. microphyllum at all the field sites over the entire 2 years of the study.