30 resultados para Biology, Physiology

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl-secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl(-)dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in chocytes even after exposure to hypertonic or bypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is central to its function, with the most common mutation, DeltaF508, resulting in abnormal processing and trafficking. Therefore, there is a significant need to develop tools, which enable the trafficking of CFTR to be studied in vitro and in vivo. In previous studies it has been demonstrated that fusion of the green fluorescent protein (GFP) to the N-terminus of CFTR does lead to functional expression of CFTR chloride channels in epithelial cell lines. The aim of the present study was to examine whether it is possible to express GFP-tagged CFTR as a transgene in colonic and airway epithelial cells of cystic fibrosis (CF) mice and to correct the CF defect. Using the epithelial-specific human cytokeratin promoter K18, we generated bitransgenic mice cftr(G551D/G551D) K18-GFP-CFTR+/-, designated GFP mice. Transcripts for GFP-CFTR could be detected in bitransgenic mice by use of RT-PCR techniques. Expression of GFP-CFTR protein was detected specifically in the colonic epithelium by both direct GFP fluorescence and the use of an anti-GFP antibody. Ussing chamber studies showed that the ion transport defect in colon and airways observed in cftr(G551D/G551D) mice was partially corrected in the bitransgenic animals. Thus, K18-GFP-CFTR is functionally expressed in transgenic mice, which will be a valuable tool in studies on CFTR synthesis, processing and ion transport in native epithelial tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated plasma hormone profiles of corticosterone and testosterone in immature hawksbill turtles (Eretmochelys imbricata) in response to a capture stress protocol. Further, we examined whether sex and body condition were covariates associated with variation in the adrenocortical response of immature turtles. Hawksbill turtles responded to the capture stress protocol by significantly increasing plasma levels of corticosterone over a 5 h period. There was no significant sex difference in the corticosterone stress response of immature turtles. Plasma testosterone profiles, while significantly different between the sexes, did not exhibit a significant change during the 5 h capture stress protocol. An index of body condition was not significantly associated with a turtle's capacity to produce plasma corticosterone both prior to and during exposure to the capture stress protocol. In summary, while immature hawksbill turtles exhibited an adrenocortical response to a capture stress protocol, neither their sex nor body condition was responsible for variation in endocrine responses. This lack of interaction between the adrenocortical response and these internal factors suggests that the inactive reproductive- and the current energetic- status of these immature turtles are important factors, that could influence plasma hormone profiles during stress. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential heart rates during heating and cooling (heart rate hysteresis) are an important thermoregulatory mechanism in ectothermic reptiles. We speculate that heart rate hysteresis has evolved alongside vascularisation, and to determine whether this phenomenon occurs in a lineage with vascularised circulatory systems that is phylogenetically distant from reptiles, we measured the response of heart rate to convective heat transfer in the Australian freshwater crayfish, Cherax destructor. Heart rate during convective heating (from 20 to 30 degreesC) was significantly faster than during cooling for any given body temperature. Heart rate declined rapidly immediately following the removal of the heat source, despite only negligible losses in body temperature. This heart rate 'hysteresis' is similar to the pattern reported in many reptiles and, by varying peripheral blood flow, it is presumed to confer thermoregulatory benefits particularly given the thermal sensitivity of many physiological rate functions in crustaceans. (C) 2004 Published by Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p less than or equal to 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120(ctn) interacts with E-cadherin, because p120(ctn) localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During aestivation, the gut of the green-striped burrowing frog, Cyclorana alboguttata undergoes significant morphological down-regulation. Despite the potential impact such changes might have on the re-feeding efficiency of these animals following aestivation, they appear to be as efficient at digesting their first meals as active, non-aestivating animals. Such efficiency might come about by the rapid restoration of intestinal morphology with both arousal from aestivation and the initial stages of re-feeding. Consequently, this study sought to determine what morphological changes to the intestine accompany arousal and re-feeding following 3 months of aestivation. Arousal from aestivation alone had a marked impact on many morphological parameters, including small and large intestine masses, small intestinal length, LF heights, enterocyte cross-sectional area and microvilli height and density. In addition, the onset of re-feeding was correlated with an immediate reversal of many morphological parameters affected by 3 months of aestivation. Those parameters that had not returned to control levels within 36 h of feeding generally had returned to control values by the completion of digestion (i.e. defecation of the meal). Re-feeding was also associated with several changes in enterocyte morphology including the incorporation in intracytoplasmic lipid droplets and the return of enterocyte nuclear material to the 'active' euchromatin state: In conclusion, morphological changes to the gut of aestivating frogs which occur during aestivation are transitory and rapidly reversible with both arousal from aestivation and re-feeding. The proximate causes behind these transitions and their functional significance are discussed. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the hypothesis that filamentous actin associated with the complex cytoskeleton of the kangaroo sperm head and tail may be contributing to lack of plasma membrane plasticity and a consequent loss of membrane integrity during cryopreservation. In the first study, the distribution of G and F actin within Eastern Grey Kangaroo (EGK, Macropus giganteus) cauda epididymidal spermatozoa was successfully detected using DNAse-FITC and a monoclonal F-actin antibody (ab205, Abcam), respectively. G-actin staining was most intense in the acrosome but was also observed with less intensity over the nucleus and mid-piece. F-actin was located in the sperm nucleus but was not discernable in the acrosome or sperm tail. To investigate whether cytochalasin D (a known F-actin depolymerising agent) was capable of improving the osmotic tolerance of EGK cauda epididymal spermatozoa, sperm were incubated in hypo-osmotic media (61 and 104 mOsm) containing a range of cytochalasin D concentrations (0-200 mu M). Cytochalasin D had no beneficial effect on plasma membrane integrity of sperm incubated in hypo-osmotic media. However, when EGK cauda epididymidal sperm were incubated in isosmotic media, there was a progressive loss of sperm motility with increasing cytochalasin D concentration. The results of this study indicated that the F-actin distribution in cauda epididymidal spermatozoa of the EGK was surprisingly different from that of the Tammar Wallaby (M. eugenii) and that cytochalasin-D does not appear to improve the tolerance of EGK cauda epididymidal sperm to osmotically induced injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine the relative cryopreservation success of koala and wombat spermatozoa and to investigate reasons for their respective post-thaw survival by examining the sperm's response to a range of osmotic media and determining the presence and distribution of F-actin. An hypothesis was proposed that F-actin may be imparting a degree of structural inflexibility to the koala sperm plasma membrane; hence, exposure of spermatozoa to cytochalasin D (5 mu M), a F-actin depolymerisation agent, should result in increased plasticisation of the membrane and greater tolerance of cell volume changes that typically occur during cryopreservation. In experiment 1, koala (n = 4) and wombat (n = 4) spermatozoa packaged in 0.25 mL straws were cryopreserved using two freezing rates (fast-3 cm above liquid N2 interface; slow-6 degrees C/min in a freezing chamber) and two glycerol concentrations (8 and 14% v/v) in a tris-citrate glucose buffer with 15% (v/v) egg yolk. Wombat spermatozoa showed better (P < 0.01) post-thaw survival (% motile, % intact plasma membranes, % decondensed sperm heads) than koala spermatozoa. When exposed to media of varying osmolality, koala spermatozoa were less tolerant (% intact plasma membrane) of hyper-osmotic conditions (920 and 1410mOsmol/kg) than wombat spermatozoa. F-actin was localised using a monoclonal antibody but only found in the wombat sperm head. When koala and wombat spermatozoa were exposed to media of varying osmolality, cytochalasin D had no beneficial effect on sperm survival (% intact plasma membranes). This study has demonstrated that wombat spermatozoa are highly tolerant of cryopreservation when compared to koala sperm but that spermatozoa from both species show greatest post-thaw survival when frozen slowly in 14% glycerol. Koala sperm are also particularly susceptible to hyper-osmotic environments but lack of detectable F-actin in the koala spermatozoan suggests that poor cryopreservation success in this species is unlikely to be associated with F-actin induced plasma membrane inflexibility. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a first step towards the development of a method for the cryopreservation of black marlin spermatozoa, this study investigated the effect of dimethylsulfoxide (DMSO) concentration and pellet size on post-thaw spermatozoal motility. Spermatozoa were recovered from the spermatic duct of testes retrieved post-mortem from four adult black marlin caught in the Coral Sea spawning grounds of Australia. Undiluted spermatozoa. were stored on ice for 4 to 10 hours during transport to shore, then evaluated for motility after activation in seawater (1:10 v:v). Spermatozoa were prepared for cryopreservation in pellets by extension (1:3 v:v) in a defined fish Ringer's solution to give two final DMSO concentrations of 2.5% or 5.0%. Diluted spermatozoa were frozen directly on a dry ice block in pellet sizes of either 0.25 ml or 0.50 ml. Frozen pellets were thawed in a water bath at 40 degrees C for 60 seconds and assessed for post-thaw motility following activation in seawater. Spermatozoa recovered within 50 minutes of death and chilled on ice for 4 to 10 hours showed a mean (+/- SEM) motility immediately following activation of 91.6 +/- 7.9%. 50% of the spermatozoa remained motile for approximately 4 to 5 minutes. Following cryopreservation; mean motility declined significantly across all cryoprotectant and pellet size combinations (P < 0.001) but spermatozoa frozen in 2.5% DMSO showed higher motility than those frozen in 5.0% DMSO (P = 0.014). Pellet size had no effect on post-thaw motility (P = 0.179).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. in conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the capacity of two reptiles, an agamid lizard Pogona barbata and a chelid turtle Emydura signata, to compensate for the effects of temperature by making changes in their whole blood respiratory properties. This was accomplished by measuring the P-50 (at 10, 20 and 30 degrees C), hematocrit (Hct), haemoglobin concentration ([Hb]) and mean cell haemoglobin concentration (MCHC) in field acclimatised and laboratory acclimated individuals. The acute effect of temperature on P50 in P barbata, expressed as heat of oxygenation (Delta H), ranged from -16.8 +/- 1.84 to -28.5 +/- 2.73 kJ/mole. P-50 of field acclimatised P barbata increased significantly from early spring to summer at the test temperatures of 20 degrees C (43.1 +/- 1.2 to 48.8 +/- 2.1 mmHg) and 30 degrees C (54.7 +/- 1.2 to 65.2 +/- 2.3 mmHg), but showed no acclimation under laboratory conditions. For E. signata, Delta H ranged from -31.1 +/- 6.32 to -48.2 +/- 3.59 kJ/mole. Field acclimatisation and laboratory acclimation of P-50 did not occur. However, in E. signata, there was a significant increase in [Hb] and MCHC from early spring to summer in turtles collected from the wild (1.0 +/- 0.1 to 1.7 +/- 0.2 mmol/L and 4.0 +/- 0.3 to 6.7 +/- 0.7 mmol/L, respectively). (C) 2005 Published by Elsevier Inc.