29 resultados para Biology, Molecular|Biology, Microbiology|Chemistry, Biochemistry
em University of Queensland eSpace - Australia
Resumo:
The psaBCA locus of Streptococcus pneumoniae encodes a putative ABC Mn2+-permease complex. Downstream of the operon is psaD, which may be co-transcribed and encodes a thiol peroxidase. Previously, there has been discordance concerning the phenotypic impact of mutations in the psa locus, resolution of which has been complicated by differences in mutant construction and the possibility of polar effects. Here, we constructed unmarked, in frame deletion mutants DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaD, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD in S. pneumoniae D39 to examine the role of each gene within the locus in Mn2+ uptake, susceptibility to oxidative stress, virulence, nasopharyngeal colonization and chain morphology. The requirement for Mn2+ for growth and transformation was also investigated for all mutants. Inductively coupled plasma mass spectrometry (ICP-MS) analysis provided the first direct evidence that PsaBCA is indeed a Mn2+ transporter. However, this study did not substantiate previous reports that the locus plays a role in choline-binding protein pro-duction or chain morphology. We also confirmed the importance of the Psa permease in systemic virulence and resistance to superoxide and hydrogen peroxide, as well as demonstrating a role in nasopharyngeal colonization for the first time. Further evi-dence is provided to support the requirement for Mn2+ supplementation for growth and transformation of DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD mutants. However, transformation, as well as growth, of the DeltapsaD mutant was not dependent upon Mn2+ supplementation. We also show that, apart from sensitivity to hydrogen peroxide, the DeltapsaD mutant exhibited essentially similar phenotypes to those of the wild type. Western blot analysis with a PsaD antiserum showed that deleting any of the genes upstream of psaD did not affect its expression. However, we found that deleting psaB resulted in decreased expression of PsaA relative to that in D39, whereas deleting both psaB and psaC resulted in at least wild-type levels of PsaA.
Resumo:
Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Resumo:
As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements K Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry - the cause of the concern. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Measurement of the temperature-dependence of thrombin-catalyzed cleavage of the Arg(155)-Ser(156) and Arg(284)-Thr(285) peptide bonds in prothrombin and prothrombin-derived substrates has yielded Arrhenius parameters that are far too large for classical mechanistic interpretation in terms of a simple hydrolytic reaction. Such a difference from the kinetic behavior exhibited in trypsin- and chymotrypsin-catalyzed proteolysis of peptide bonds is attributed to contributions by enzyme exosite interactions as well as enzyme conformational equilibria to the magnitudes of the experimentally determined Arrhenius parameters. Although the pre-exponential factor and the energy of activation deduced from the temperature-dependence of rate constants for proteolysis by thrombin cannot be accorded the usual mechanistic significance, their evaluation serves a valuable role by highlighting the existence of contributions other than those emanating from simple peptide hydrolysis to the kinetics of proteolysis by thrombin and presumably other enzymes of the blood coagulation system. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This review highlights structural and biosynthetic work on a group of nitrogen-functionalised terpenes that are almost exclusively found in marine invertebrates and the animals that feed on them. The chemical functionality reviewed includes isocyanides, isothiocyanates, formamides, thiocyanates, isocyanates, and dichloroimines. The literature through mid 2003 is reviewed and there are 143 citations.
Resumo:
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Resumo:
Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of squashed whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.
Resumo:
A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A MerR-like regulator (NmlR -Neisseria merR-like Regulator) identified in the Neisseria gonorrhoeae genome lacks the conserved cysteines known to bind metal ions in characterized proteins of this family. Phylogenetic analysis indicates that NmlR defines a subfamily of MerR-like transcription factors with a distinctive pattern of conserved cysteines within their primary structure. NmlR regulates itself and three other genes in N. gonorrhoeae encoding a glutathione-dependent dehydrogenase (AdhC), a CPx-type ATPase (CopA) and a thioredoxin reductase (TrxB). An nmlR mutant lacked the ability to survive oxidative stress induced by diamide and cumene hydroperoxide. It also had > 50-fold lower NADH-S-nitrosoglutathione oxidoreductase activity consistent with a role for AdhC in protection against nitric oxide stress. The upstream sequences of the NmlR regulated genes contained typical MerR-like operator/promoter arrangements consisting of a dyad symmetry located between the -35 and -10 elements of the target genes. The NmlR target operator/promoters were cloned into a beta-galactosidase reporter system and promoter activity was repressed by the introduction of NmlR in trans. Promoter activity was activated by NmlR in the presence of diamide. Under metal depleted conditions NmlR did not repress P-AdhC (or P-CopA) promoter activity, but this was reversed in the presence of Zn(II), indicating repression was Zn(II)-dependent. Analysis of mutated promoters lacking the dyad symmetry revealed constitutive promoter activity which was independent of NmlR. Gel shift assays further confirmed that NmlR bound to the target promoters possessing the dyad symmetry. Site-directed mutagenesis of the four NmlR cysteine residues revealed that they were essential for activation of gene expression by NmlR.
Resumo:
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure -function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.
Resumo:
The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 muM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state. (C) 2004 Elsevier Ltd. Inc. All rights reserved.
Resumo:
Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa.