67 resultados para Biology, Molecular|Biology, Genetics|Biology, Virology

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximate to 860 bp mtDNA control region as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene now currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Injection of particulate hepatitis B virus surface antigen (HBsAg) in mice leads to the induction of a HBsAg-specific class-I-restricted cytotoxic T lymphocyte (CTL) response. It is proposed that any protein internal to HBsAg will also be able to elicit a specific CTL response. In this study, several carboxy-terminal truncations of hepatitis C virus (HCV) core protein were fused to varying lengths of amino-terminal truncated large hepatitis delta antigen (L-HDAg). These constructs were analysed for their ability to be expressed and the particles secreted in the presence of HBsAg after transfection into HuH-7 cells. The secretion efficiency of the various HCV core-HDAg chimeric proteins was generally poor. Constructs containing full length HDAg appeared to be more stable than truncated versions and the length of the inserted protein was restricted to around 40 amino acids. Thus, the use of L-HDAg as a chimera to package foreign proteins is limited. Consequently, a polyepitope (polytope) containing a B-cell epitope from human papillomavirus (HPV 16) and multiple T-cell epitopes from the HCV polyprotein was used to create the construct, L-HDAg-polyB. This chimeric protein was shown to be reliant on the co-expression of HBsAg for secretion into the cell culture fluid and was secreted more efficiently than the previous HCV core-HDAg constructs. These L-HDAg-polyB virus-like particles (VLPs) had a buoyant density of similar to 1.2 g/cm(3) in caesium chloride and similar to 1.15 g/cm(3) in sucrose. The VLPs were also immunoprecipitated using an anti-HBs but not an anti-HD antibody. Thus, these recombinant VLPs have similar biophysical properties to L-HDAg VLPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macropodid herpesvirus 1 (MaHV-1) is an unclassified alphaherpesvirus linked with the fatal infections of kangaroos and other marsupials. During the characterisation of the internal repeat region of MaHV-1, an open reading frame (ORF) encoding for thymidylate synthase (TS) gene was identified and completely sequenced. Southern blot analysis confirmed the presence of two copies of the TS gene in the MaHV-1 genome as expected. Computer analysis of the TS ORF showed it was 948 nucleotides in length. A putative polyadenylation signal was identified 17-22 bp inside the ORF implying a minimal or absent 3' untranslated region. The predicted polypeptide was 316 amino acid residues in length and contained the highly conserved motifs for folate binding and F-dUMP binding, typical of all TS enzymes. Interestingly, MaHV-1 TS polypeptide had highest similarity to the human TS polypeptide (81%) compared to the TS polypeptides of other herpesviruses (72-75%). Immediately upstream of the TS gene, a second ORF of 510 bp, encoding a polypeptide with 170 amino acid residues, was identified. The carboxyl domain of this MaHV-1 polypeptide shared 68% similarity to a 59 amino acid motif of human herpesvirus 1 ICP34.5, identifying it as the MaHV-1 ICP34.5 homologue. This is the first report of a herpesvirus that encodes for both TS and ICP34.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which lateral genetic transfer has shaped microbial genomes has major implications for the emergence of community structures. We have performed a rigorous phylogenetic analysis of > 220,000 proteins from genomes of 144 prokaryotes to determine the contribution of gene sharing to current prokaryotic diversity, and to identify highways of sharing between lineages. The inferred relationships suggest a pattern of inheritance that is largely vertical, but with notable exceptions among closely related taxa, and among distantly related organisms that live in similar environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC 1.8.2.1), Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alpha beta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa monoheme cytochrome c(552) smbunit (midpoint redox potential, Em(8.0) = +280 mV), The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K-m values for sulfite and cytochrome c(550) were determined to be 27 and 4 mu M, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite its toxicity, sulfite plays a key role in oxidative sulfur metabolism and there are even some microorganisms which can use it as sole electron source. Sulfite is the main intermediate in the oxidation of sulfur compounds to sulfate, the major product of most dissimilatory sulfur-oxidizing prokaryotes. Two pathways of sulfite oxidation are known: (1) direct oxidation to sulfate catalyzed by a sulfite: acceptor oxidoreductase, which is thought to be a molybdenum-containing enzyme; (2) indirect oxidation under the involvement of the enzymes adenylylsulfate (APS) reductase and ATP sulfurylase and/or adenylylsulfate phosphate adenylyltransferase with APS as an intermediate. The latter pathway allows substrate phosphorylation and occurs in the bacterial cytoplasm. Direct oxidation appears to have a wider distribution; however, a redundancy of pathways has been described for diverse photo- or chemotrophic, sulfite-oxidizing prokaryotes. In many pro- and also eukaryotes sulfite is formed as a degradative product from molecules containing sulfur as a heteroatom. In these organisms detoxification of sulfite is generally achieved by direct oxidation to sulfate. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Important pathogenic alterations within established cancers are acquired during the premalignant stage. These genetic alterations can be grouped into specific neoplastic pathways that differ within and between anatomical sites. By understanding the mechanisms that determine the initiation and progression of each pathway, it will be possible to develop novel approaches to the diagnosis, prevention and treatment of cancer. This chapter outlines the principles underlying the molecular characterization of pre-malignant lesions, taking colorectal neoplasia as the main model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breeding methodologies for cultivated lucerne (Medicago sativa L.), an autotetraploid, have changed little over the last 50 years, with reliance on polycross methods and recurrent phenotypic selection. There has been, however, an increase in our understanding of lucerne biology, in particular the genetic relationships between members of the M. sativa complex, as deduced by DNA analysis. Also, the differences in breeding behaviour and vigour of diploids versus autotetraploids, and the underlying genetic causes, are discussed in relation to lucerne improvement. Medicago falcata, a member of the M. sativa complex, has contributed substantially to lucerne improvement in North America, and its diverse genetics would appear to have been under-utilised in Australian programs over the last two decades, despite the reduced need for tolerance to freezing injury in Australian environments. Breeding of lucerne in Australia only commenced on a large scale in 1977, driven by an urgent need to introgress aphid resistance into adapted backgrounds. The release in the early 1980s of lucernes with multiple pest and disease resistance (aphids, Phytophthora, Colletotrichum) had a significant effect on increasing lucerne productivity and persistence in eastern Australia, with yield increases under high disease pressure of up to 300% being recorded over the predominant Australian cultivar, up to 1977, Hunter River. Since that period, irrigated lucerne yields have plateaued, highlighting the need to identify breeding objectives, technologies, and the germplasm that will create new opportunities for increasing performance. This review discusses major goals for lucerne improvement programs in Australia, and provides indications of the germplasm sources and technologies that are likely to deliver the desired outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis. (c) 2006 Elsevier B.V. All rights reserved.