246 resultados para Biology, Genetics|Health Sciences, Ophthalmology|Health Sciences, Pathology

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the historic H1 subtype, H1-1, in eight legumes belonging to four genera of the tribe Vicieae (Pisum, Lathyrus, Lens, and Vicia), revealed an extended region consisting of the tandemly repeated AKPAAK motifs. We named this region the Regular zone (RZ). The AKPAAK motifs are organized into two blocks separated by a short (two or six amino acids) intervening sequence (IS). The distal block contains six AKPAAK motifs, while the number of repeats in the proximal block varies from six in V. faba to seven in the other species. In V. hirsuta, the first two repeated units of the proximal block are octapeptides AKAKPAAK. The apparent rate of synonymous substitutions in the blocks of RZ is much higher than in the rest of the gene. This can be explained by repeat shuffling within each block. In the C-domain of the orthologous H1 subtype froth Medicago truncatula (tribe Trifolieae), a region corresponding to the RZ of Vicieae species was found. It also consists of two blocks of AKPAAK motifs (four and three repeats in the proximal and distal blocks, respectively). These blocks are separated by a 20-amino acid IS. The first 20 amino acids of the Medicago RZ are not part of AKPAAK repeats. We hypothesise that the RZ has most probably evolved as a result of an expansion of AKPAAK repeats from two separate sites in the C-domain. This process started tens of millions of years ago and was most likely directed by positive selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement, which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of reproductive character displacement; there are no unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should affect multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja, California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limits gene exchange between biogeographic regions and helps maintain evidence of past vicariance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wolbachia ensdosymbionts are well known for their ability to manipulate the population biology and development of their hosts. One of the less studied outcomes of Wolbachia infection with this symbiont is the selective killing of male embryos. Recent work on butterflies living on different South Pacific islands is beginning to help us understand the complexity of the co-evolutionary interactions between these partners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.