2 resultados para Biological specimens
em University of Queensland eSpace - Australia
Resumo:
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure -function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Research expeditions into remote areas to collect biological specimens provide vital information for understanding biodiversity. However, major expeditions to little-known areas are expensive and time consuming, time is short, and well-trained people are difficult to find. In addition, processing the collections and obtaining accurate identifications takes time and money. In order to get the maximum return for the investment, we need to determine the location of the collecting expeditions carefully. In this study we used environmental variables and information on existing collecting localities to help determine the sites of future expeditions. Results from other studies were used to aid in the selection of the environmental variables, including variables relating to temperature, rainfall, lithology and distance between sites. A survey gap analysis tool based on 'ED complementarity' was employed to select the sites that would most likely contribute the most new taxa. The tool does not evaluate how well collected a previously visited site survey site might be; however, collecting effort was estimated based on species accumulation curves. We used the number of collections and/or number of species at each collecting site to eliminate those we deemed poorly collected. Plants, birds, and insects from Guyana were examined using the survey gap analysis tool, and sites for future collecting expeditions were determined. The south-east section of Guyana had virtually no collecting information available. It has been inaccessible for many years for political reasons and as a result, eight of the first ten sites selected were in that area. In order to evaluate the remainder of the country, and because there are no immediate plans by the Government of Guyana to open that area to exploration, that section of the country was not included in the remainder of the study. The range of the ED complementarity values dropped sharply after the first ten sites were selected. For plants, the group for which we had the most records, areas selected included several localities in the Pakaraima Mountains, the border with the south-east, and one site in the north-west. For birds, a moderately collected group, the strongest need was in the north-west followed by the east. Insects had the smallest data set and the largest range of ED complementarity values; the results gave strong emphasis to the southern parts of the country, but most of the locations appeared to be equidistant from one another, most likely because of insufficient data. Results demonstrate that the use of a survey gap analysis tool designed to solve a locational problem using continuous environmental data can help maximize our resources for gathering new information on biodiversity. (c) 2005 The Linnean Society of London.