25 resultados para Biological activity
em University of Queensland eSpace - Australia
Resumo:
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.
Resumo:
The phosphosulfomannan 1 (PI-88) is a mixture of highly sulfated oligosaccharides that is currently undergoing clinical evaluation in cancer patients. As well as it's anticancer properties, 1 displays a number of other interesting biological activities. A series of analogues of 1 were synthesized with a single carbon (pentasaccharide) backbone to facilitate structural characterization and interpretation of biological results. In a fashion similar to 1, all compounds were able to inhibit heparanase and to bind tightly to the proangiogenic growth factors FGF-1, FGF-2, and VEGF. The compounds also inhibited the infection of cells and cell-to-cell spread of herpes simplex virus (HSV-1). Preliminary pharmacokinetic data indicated that the compounds displayed different pharmacokinetic behavior compared with 1. Of particular note was the n-octyl derivative, which was cleared 3 times less rapidly than 1 and may provide increased systemic exposure.
Resumo:
The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their-remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present Study describes the first steps towards exploiting the cyclotide framework by synthesizing and structurally characterizing two grafted analogues of the cyclotide kalata B1. The modified peptides have polar or charged residues substituted for residues that form part of a surface-exposed hydrophobic patch that plays a significant role in the folding and biological activity of kalata B1. Both analogues retain the native cyclotide fold, but lack the undesired haemolytic activity of their parent molecule, kalata B1. This finding confirms the tolerance of the cyclotide framework to residue Substitutions and opens up possibilities for the Substitution of biologically active peptide epitopes into the framework.
Resumo:
Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.
Resumo:
A large number of macrocyclic miniproteins with diverse biological activities have been isolated from the Rubiaceae, Violaceae, and Cucurbitaceae plant families in recent years. Here we report the three-dimensional structure determined using H-1 NMR spectroscopy and demonstrate potent insecticidal activity for one of these peptides, kalata B2. This peptide is one of the major components of an extract from the leaves of the plant Oldenlandia affinis. The structure consists of a distorted triple-stranded beta-sheet and a cystine knot arrangement of the disulfide bonds and is similar to those described for other members of the cyclotide family. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals that they can be separated into two subfamilies, one of which contains a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-peptidyl-proline bond and may conceptually be regarded as a molecular Mobius strip. Kalata B2 is the second putative member of the Mobius cyclotide family to be structurally characterized and has a cis-peptidyl-proline bond, thus validating the suggested name for this subfamily of cyclotides. The observation that kalata B2 inhibits the growth and development of Helicoverpa armigera larvae suggests a role for the cyclotides in plant defense. A comparison of the sequences and structures of kalata B1 and B2 provides insight into the biological activity of these peptides.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.
Resumo:
The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The muO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the muO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small beta-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone loops between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known delta- and omega-conotoxins, which along with the muO-conotoxins are members of the O superfamily. Loop 2 of omega-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.
Resumo:
A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric alpha-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and H-1-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblasts. As we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.
Resumo:
Eugenin [pGluGlnAspTyr(SO3)ValPheMetHisProPhe-NH2] has been isolated from the pouches of female Tammar wallabies (Macropus eugenii) carrying young in the early lactation period. The sequence of eugenin has been determined using a combination of positive and negative ion electrospray mass spectrometry. This compound bears some structural resemblance to the mammalian neuropeptide cholecystokinin 8 [AspTyr(SO3)MetGlyTrpMetAspPhe-NH2] and to the amphibian caerulein peptides [caerulein: pGluGlnAspTyr(SO3)ThrGlyTrpMetAspPhe-NH2]. Eugenin has been synthesized by a route which causes only minor hydrolysis of the sulfate group when the peptide is removed from the resin support. Biological activity tests with eugenin indicate that it contracts smooth muscle at a concentration of 10(-9) m, and enhances the proliferation of splenocytes at 10(-7) M, probably via activation of CCK2 receptors. The activity of eugenin on splenocytes suggests that it is an immunomodulator peptide which plays a role in the protection of pouch young.
Resumo:
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of delta(18)O and delta(13)C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta O-18 values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta C-13 is interpreted as responding negatively to increases in atmospheric CO, concentration, biological activity and precipitation amount. Six climatic phases are recognized. After adjustment of 1.2parts per thousand for the ice volume effect, the delta(18)O record between 23 and 18 ka varies around -3.72parts per thousand compared to the Holocene average of -3.17parts per thousand. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55parts per thousand depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive delta(18)O excursions at 11.14 ka and 6.91-6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe. Delta C-13 values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in delta-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the delta(18)O record from 13.53 to 11.14 ka was not reflected in delta(13)C changes. The lowest delta(13)C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild. Major trends in the delta(18)O(c) record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Folates and its derivatives occur as polyglutamates in nature. The multiplicity of forms and the generally low levels in foods makes quantitative analysis of folate a difficult task. The assay of folates from foods generally involves three steps: liberation of folates from the cellular matrix; deconjugation from the polyglutamate to the mono and di-glutamate forms; and the detection of the biological activity or chemical concentration of the resulting folates. The detection methods used are the microbiological assay relying on the turbidimetric bacterial growth of Lactobacillus rhamnosus which is by far the most commonly used method; the HPLC and LC/MS techniques and bio-specific procedures. This review attempts to describe the methods along with the merits and demerits of using each of these methods.