4 resultados para Biological Species Concept

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gnathostome vertebrate remains from fine-grained sandstones of the Silverband Formation in the Grampians, Victoria include dissociated fin spines, scales and teeth. These elements arc assigned herein to the acanthodians Sinacanthus? micracanthus (fin spines) and Radioporacanthodes sp. cf. R. qujingensis (scales and tooth whorls). This fauna indicates a Late Silurian (?late Ludlow) age for the vertebrate-beating Stratum. Under current systematic groupings, the two gnathostome taxa from the Silverband Formation belong to two different families, the Sinacanthidae and the Poracanthodidae. However. the preserved association could indicate that the three element types derived from the same biological species. The possibility that the Sinacanthidae is a sister group to the Climatiidae and the Poracanthodidae is raised by this scenario. The Sinacanthidae is tentatively reassigned to the Acanthodii, as it is considered to lack diagnostic chondrichthyan characters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio-arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio-arterial pathway across the respiratory lamellae; an arterio-arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.