16 resultados para Binary system (Mathematics)
em University of Queensland eSpace - Australia
Resumo:
A K-t,K-t-design of order n is an edge-disjoint decomposition of K-n into copies of K-t,K-t. When t is odd, an extended metamorphosis of a K-t,K-t-design of order n into a 2t-cycle system of order n is obtained by taking (t - 1)/2 edge-disjoint cycles of length 2t from each K-t,K-t block, and rearranging all the remaining 1-factors in each K-t,K-t block into further 2t-cycles. The 'extended' refers to the fact that as many subgraphs isomorphic to a 2t-cycle as possible are removed from each K-t,K-t block, rather than merely one subgraph. In this paper an extended metamorphosis of a K-t,K-t-design of order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is given for all odd t > 3. A metamorphosis of a 2-fold K-t,K-t-design of any order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is also given, for all odd t > 3. (The case t = 3 appeared in Ars Combin. 64 (2002) 65-80.) When t is even, the graph K-t,K-t is easily seen to contain t/2 edge-disjoint cycles of length 2t, and so the metamorphosis in that case is straightforward. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
The four-component Fe-Sn-Zn-O system was studied experimentally in the range of temperatures from 1100 to 1400 degrees C in air using high temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Phase equilibrium relations and the extent of solid solutions among the phases cassiterite (Sn,Zn)O-2, hematite (Fe,Sn,Zn)(2)O-3, spinel (Fe,Sn,Zn)(3)O-4 and zincite (Zn,Fe,Sn)O are reported. Phase equilibria in the pseudo-binary systems Fe2O3-SnO2 and SnO2-ZnO are reported in air in the temperature ranges from 1100 to 1400 degrees C and 1200 to 1400 degrees C, respectively.
Resumo:
The phase equilibria in the Al-Fe-Zn-O system in the range 1250 °C to 1695 °C in air have been experimentally studied using equilibration and quenching techniques followed by electron probe X-ray microanalysis. The phase diagram of the binary Al2O3-ZnO system and isothermal sections of the Al2O3-“Fe2O3”-ZnO system at 1250 °C, 1400 °C, and 1550 °C have been constructed and reported for the first time. The extents of solid solutions in the corundum (Al,Fe)2O3, hematite (Fe,Al)2O3, Al2O3*Fe2O3 phase (Al,Fe)2O3, spinel (Al,Fe,Zn)O4, and zincite (Al,Zn,Fe)O primary phase fields have been measured. Corundum, hematite, and Al2O3*Fe2O3 phases dissolve less than 1 mol pct zinc oxide. The limiting compositions of Al2O3*Fe2O3 phase measured in this study at 1400 °C are slightly nonstoichiometric, containing more Al2O3 then previously reported. Spinel forms an extensive solid solution in the Al2O3-“Fe2O3”-ZnO system in air with increasing temperature. Zincite was found to dissolve up to 7 mole pct of aluminum in the presence of iron at 1550 °C in air. A meta-stable Al2O3-rich phase of the approximate composition Al8FeZnO14+x was observed at all of the conditions investigated. Aluminum dissolved in the zincite in the presence of iron appears to suppress the transformation from a round to platelike morphology.
Resumo:
The phase equilibria in the Fe-Mg-Zn-O system in the temperature range 1100-1550degreesC in air have been experimentally studied using equilibration and quenching followed by electron probe X-ray microanalysis. The compositions of condensed phases in equilibrium in the binary MgO-ZnO system and the ternary Fe-Mg-O system have been reported at sub-solidus in air. Pseudo-ternary sections of the quaternary Fe-Mg-Zn-O system at 1100, 1250 and 1400degreesC in air were constructed using the experimental data. The solid solution of iron oxide, MgO and ZnO in the periclase (Mg, Zn, Fe)O, spinel (Mg2+, Fe2+, Zn2+)(x)Fe(2+y)3+O4 and zincite (Zn, Mg, Fe)O phases were found to be extensive under the conditions investigated. A continuous spinel solid solution is formed between the magnesioferrite (Mg2+, Fe2+)(x)Fe(2+y)3+O4 and franklinite (Zn2+, Fe2+)(x)Fe(2+y)3+O4 end-members at 1100 and 1250degreesC, extending to magnetite (Fe2+)(x)Fe(2+y)3+O4 at 1400degreesC in air. The compositions along the spinel boundaries were found to be non-stoichiometric, the magnitude of the non-stoichiometry being a function of composition and temperature in air. It was found that hematite dissolves neither MgO nor ZnO in air.
Resumo:
The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448 +/- 5 degrees C and 0.52 +/- 0.01 mole fraction ZnO and at 1502 +/- 5 degrees C and 0.71 +/- 0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3SiO2-ZnO system were found to be at 1315 +/- 5 degrees C and 1425 +/- 25 T, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.
Resumo:
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU(N) QH system there can exist (N-1) types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N-1) Cartan subalgebra local bases, we obtain the (N-1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N-1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the phi-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.
Resumo:
In this paper, we introduce and study a new system of variational inclusions involving (H, eta)-monotone operators in Hilbert space. Using the resolvent operator associated with (H, eta)monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
Dynamic binary translation is the process of translating, modifying and rewriting executable (binary) code from one machine to another at run-time. This process of low-level re-engineering consists of a reverse engineering phase followed by a forward engineering phase. UQDBT, the University of Queensland Dynamic Binary Translator, is a machine-adaptable translator. Adaptability is provided through the specification of properties of machines and their instruction sets, allowing the support of different pairs of source and target machines. Most binary translators are closely bound to a pair of machines, making analyses and code hard to reuse. Like most virtual machines, UQDBT performs generic optimizations that apply to a variety of machines. Frequently executed code is translated to native code by the use of edge weight instrumentation, which makes UQDBT converge more quickly than systems based on instruction speculation. In this paper, we describe the architecture and run-time feedback optimizations performed by the UQDBT system, and provide results obtained in the x86 and SPARC® platforms.
Resumo:
Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.
Resumo:
A modified UNIQUAC model has been extended to describe and predict the equilibrium relative humidity and moisture content for wood. The method is validated over a range of moisture content from oven-dried state to fiber saturation point, and over a temperature range of 20-70 degrees C. Adjustable parameters and binary interaction parameters of the UNIQUAC model were estimated from experimental data for Caribbean pine and Hoop pine as well as data available in the literature. The two group-interaction parameters for the wood-moisture system were consistent with using function group contributions for H2O, -OH and -CHO. The result reconfirms that the main contributors to water adsorption in cell walls are the hydroxyl groups of the carbohydrates in cellulose and hemicelluloses. This provides some physical insight into the intermolecular force and energy between bound water and the wood material. (c) 2006 Elsevier Ltd. All rights reserved.