8 resultados para Bilayer

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopallmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cbolesterol-dependent and cholesterol-independent microdomains. In contrast, monopallmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-pahnitate is weaker. Thus, membrane affinity of a pallmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopahnitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimers are nonviral vectors that have attracted interest on account of a number of features. They are structurally versatile because their size, shape, and surface charge can be selectively altered. Here we examine the functions of a new family of composite dendrimers that were synthesized with lipidic amino acid cores. These dendrimers are bifunctional because they are characterized by positively charged (lysine) modules for interaction with nucleic acids and neutral lipidic moieties for membrane lipid-bilayer transit. We assessed their structure-function correlations by a combination of molecular and biophysical techniques. Our assessment revealed an unexpected pleitropy of functions subserved by these vectors that included plasmid and oligonucleotide delivery. We also generated a firefly luciferase cell line in which we could modulate luciferase activity by RNA interference. We found that these vectors could also mediate RNA suppression of luciferase expression by delivering double-stranded luciferase transcripts generated in vitro. The structural uniqueness of these lipidic peptide dendrimers coupled with their ease and specificity of assembly and the versatility in their choice of cargo, puts them in a new category of macromolecule carriers. These vectors, therefore, have potential applications as epigenetic modifiers of gene function. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing incidence x-ray-diffraction investigations of the structures of Langmuir-Blodgett films of cadmium behenate with 1, 2, 3, 5, and 21 monolayers are reported. The single monolayer film, deposited on a hydrophilic substrate, showed a hexagonal structure, whereas the bilayer film, deposited on a hydrophobic substrate, had a rectangular structure with herringbone orientation of the acyl chains. With multilayer films formed on a hydrophilic substrate, it was possible to detect that the hexagonal structure of the first layer was retained when additional layers were deposited and that the additional layers had the same rectangular structure as the bilayer. (c) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer- sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.