4 resultados para Bicycle touring

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines issues encountered when developing new tourism services generally, and specific aspects relating to the development of remote area dinosaur fossil fields for tourism. It studies two sites, one in the USA and one in Australia. Access to both sites is by minor roads, and both sites are characterised by long drives separating the sites from small communities that offer limited infrastructure and few other attractions for visitors. In both areas, however, tourism is seen as one of the few possible ways to sustain existing communities in the face of declining primary-industry-based employment. In general, tourists visiting these areas are on touring holidays of two weeks’ duration or more where the attraction is the general attributes of the region as well as to a lesser extent their interest in dinosaur fossils. These provide a potential resource for remote-region economic development through commodification as a new tourism attraction. Development of dinosaur fossil finds as a tourism resource is conceptualised here as new service development. Developing new tourism services, especially in remote regions, is challenging and has not been well examined in the tourism literature. The new service development process used in this case study first examines the characteristics of the existing tourists travelling through the region. The characteristics of a number of potential market segments currently interested in dinosaur fossils were then examined and contrasted with the existing market. This is conceptualised on a specialist-generalist spectrum of interest in fossils. A study of the tourist service features associated with dinosaur fossil tourism in remote regions of the USA was conducted, leading to the identification of a number of possible incremental development opportunities. The paper then takes a strategic approach to examining potential new tourism service development related to dinosaur fossils in remote regions of Queensland, Australia. In particular, it describes use of information about existing services in similar regions as the basis for ideas about development as well as comparison between existing and potential markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated plasma homocysteine is recognized as an independent risk factor for cardiovascular disease. Recently, there have been conflicting reports of the relationship between physical activity and homocysteine. A more objective measure of physical activity is cardiorespiratory fitness; however, its relationship with homocysteine has yet to be investigated. The aim of this study was to determine the relationship between cardiorespiratory fitness and plasma homocysteine. Cross-sectional associations between cardiorespiratory fitness (VO(2)max) and plasma homocysteine were examined in 49 men and 11 women. A submaximal bicycle test was used to determine VO(2)max and plasma homocysteine was measured using high performance liquid chromatography with fluorescence detection. Dietary analysis determined B vitamin intake. There was a significant inverse relationship between plasma homocysteine concentration and VO(2)max in women (r = -0.81, P = 0.003) but not in men (r = -0.09, P = 0.95). There were no significant relationships between plasma homocysteine and age, BMI, body fat, total cholesterol, and LDL cholesterol. In summary, elevated cardiorespiratory fitness is associated with decreased plasma homocysteine concentrations in women. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Brachial blood pressure predicts cardiovascular outcome at rest and during exercise. However, because of pulse pressure amplification, there is a marked difference between brachial pressure and central (aortic) pressure. Although central pressure is likely to have greater clinical importance, very little data exist regarding the central haemodynamic response to exercise. The aim of the present study was to determine the central and peripheral haemodynamic response to incremental aerobic exercise. Materials and methods Twelve healthy men aged 31 +/- 1 years (mean +/- SEM) exercised at 50%, 60%, 70% and 80% of their maximal heart rate (HRmax) on a bicycle ergometer. Central blood pressure and estimated aortic pulse wave velocity, assessed by timing of the reflected wave (T-R), were obtained noninvasively using pulse wave analysis. Pulse pressure amplification was defined as the ratio of peripheral to central pulse pressure and, to assess the influence of wave reflection on amplification, the ratio of peripheral pulse pressure to nonaugmented central pulse pressure (PPP : CDBP-P-1) was also calculated. Results During exercise, there was a significant, intensity-related, increase in mean arterial pressure and heart rate (P < 0.001). There was also a significant increase in pulse pressure amplification and in PPP : CDBP-P-1 (P < 0.001), but both were independent of exercise intensity. Estimated aortic pulse wave velocity increased during exercise (P < 0.001), indicating increased aortic stiffness. There was also a positive association between aortic pulse wave velocity and mean arterial pressure (r = 0.54; P < 0.001). Conclusions Exercise significantly increases pulse pressure amplification and estimated aortic stiffness.