3 resultados para Behavior analysis

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time period analysis was used in an international sample of clients ( N = 106) to demonstrate that cognitive - behavioral therapy (CBT) for panic disorder is associated with specific changes in both negative and positive cognitions during the treatment period. In the first 6 weeks of the treatment phase, working alliance failed to predict changes in panic severity, whereas changes in panic self-efficacy and catastrophic misinterpretation of bodily sensations predicted rapid symptom relief. In the last 6 weeks of treatment, higher doses of CBT were associated with further changes in positive and negative cognitions. The findings can be interpreted as suggesting that the role of the working alliance in CBT for panic disorder is to facilitate cognitive change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.