15 resultados para Bamboo nurseries

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that early-planted seedbeds of rioe are mere heavily infested with brown planthopper (BPH) than later seedbeds, and that transplanted plants with lBPH are a source of subsequent population increase and possible outbreaks. The experiments were conducted at CARDI and Takeo province in wet season 2000 and early wet 2 season 200 I. BPH at O. 25. 50, 100, 200 1m were infested onto plants with low and high fertilizer treatments. Rice seeds of varieties moderately and highly susceptible to BPH were sown 3 weeks early, 2 weeks early, at the normal time, and later than normal (5 weeks) and treated with low and high fertilizer rates. At Takeo, the 3< weeks early seedbeds were infested by BPH migration, and both varieties with high fertilizer caught more immigrant insects and subsequently had damaging outbreaks of BPH in the third generation. At CARDl, no seedbeds were infested with immigrant BPH. Seedbeds in areas with continuous cropping of rice have a high risk of BPH attack, Seedlings infested with 200, 100, and 50 BPI[/m2 resulted in death of the plant. Plants with 100 and 200 BPH/m'! were kj[Jed sooner. With 25 BPIVm2 plants were not kllled, but subsequent population increase caused yi eld reduction. Yield loss was high ill higlh fertilizer treated plants. Key words , ,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surveys of commercial soybean fields, disease nurseries, and trial plots of soybean were conducted throughout eastern Australia between 1979 and 1996, and 694 isolates of Phytophthora sojae were collected and classified into races. Fourteen races, 1, 2, 4, 10, 15, and 25, and eight new races, 46 to 53, were identified, but only races 1, 4, 15, 25, 46, and 53 were found in commercial fields. Races 1 and 15 were the only races found in commercial fields in the soybean-growing areas of Australia up until 1989, with race 1 being the dominant race. Race 4 was found in central New South Wales in 1989 on cultivars with the Rps1a gene, and it is now the dominant race in central and southern New South Wales. Races 46 and 53 have only been found once, in southern New South Wales, and race 25 was identified in the same region in 1994 on a cultivar with the Rps1k gene. Only races 1 and 15 have been found in the northern soybean-growing regions, with the latter dominating, which coincides with the widespread use of cultivars with the Rps2 gene. Changes in the race structure of the P. sojae population from commercial fields in Australia follow the deployment of specific resistance genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared growth rates of the lemon shark, Negaprion brevirostris, from Bimini, Bahamas and the Marquesas Keys (MK), Florida using data obtained in a multi-year annual census. We marked new neonate and juvenile sharks with unique electronic identity tags in Bimini and in the MK we tagged neonate and juvenile sharks. Sharks were tagged with tiny, subcutaneous transponders, a type of tagging thought to cause little, if any disruption to normal growth patterns when compared to conventional external tagging. Within the first 2 years of this project, no age data were recorded for sharks caught for the first time in Bimini. Therefore, we applied and tested two methods of age analysis: ( 1) a modified 'minimum convex polygon' method and ( 2) a new age-assigning method, the 'cut-off technique'. The cut-off technique proved to be the more suitable one, enabling us to identify the age of 134 of the 642 previously unknown aged sharks. This maximised the usable growth data included in our analysis. Annual absolute growth rates of juvenile, nursery-bound lemon sharks were almost constant for the two Bimini nurseries and can be best described by a simple linear model ( growth data was only available for age-0 sharks in the MK). Annual absolute growth for age-0 sharks was much greater in the MK than in either the North Sound (NS) and Shark Land (SL) at Bimini. Growth of SL sharks was significantly faster during the first 2 years of life than of the sharks in the NS population. However, in MK, only growth in the first year was considered to be reliably estimated due to low recapture rates. Analyses indicated no significant differences in growth rates between males and females for any area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.