3 resultados para BRST Symmetry
em University of Queensland eSpace - Australia
Resumo:
We extend our Lanczos subspace time-independent wave packet method [J. Chem. Phys. 116 (2002) 2354] to investigate the issue of symmetry contaminations for the challenging deep-well H + O-2 reaction. Our central objective is to address the issue of whether significant symmetry contamination can occur if a wavepacket initially possessing the correct O-O exchange symmetry is propagated over tens of thousands of recursive steps using a basis which does not explicitly enforce the correct symmetry, and if so how seriously this affects the results. We find that symmetry contamination does exist where the symmetry constraint is not explicitly enforced in the basis. While it affects individual resonances and the associated peak amplitudes, the overall shape of the more averaged quantities such as total reaction probabilities and vibrational branching ratios are not seriously affected. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90 %). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays - in contrast to the famous Gurson-Tvergaard-Needleman (GTN) formula - while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.
Resumo:
We present a group theoretical analysis of several classes of organic superconductor. We predict that highly frustrated organic superconductors, such as K-(ET)(2)Cu-2(CN)(3) (where ET is BEDT-TTF, bis(ethylenedithio) tetrathiafulvalene) and beta'-[Pd(dmit)(2)](2)X, undergo two superconducting phase transitions, the first from the normal state to a d-wave superconductor and the second to a d + id state. We show that the monoclinic distortion of K-(ET)(2)Cu(NCS)(2) means that the symmetry of its superconducting order parameter is different from that of orthorhombic-K-(ET)(2)Cu[N(CN)(2)] Br. We propose that beta'' and theta phase organic superconductors have d(xy) + s order parameters.