13 resultados para BOILING POINTS

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of nonlinear parameter estimation techniques is now commonplace in ground water model calibration. However, there is still ample room for further development of these techniques in order to enable them to extract more information from calibration datasets, to more thoroughly explore the uncertainty associated with model predictions, and to make them easier to implement in various modeling contexts. This paper describes the use of pilot points as a methodology for spatial hydraulic property characterization. When used in conjunction with nonlinear parameter estimation software that incorporates advanced regularization functionality (such as PEST), use of pilot points can add a great deal of flexibility to the calibration process at the same time as it makes this process easier to implement. Pilot points can be used either as a substitute for zones of piecewise parameter uniformity, or in conjunction with such zones. In either case, they allow the disposition of areas of high and low hydraulic property value to be inferred through the calibration process, without the need for the modeler to guess the geometry of such areas prior to estimating the parameters that pertain to them. Pilot points and regularization can also be used as an adjunct to geostatistically based stochastic parameterization methods. Using the techniques described herein, a series of hydraulic property fields can be generated, all of which recognize the stochastic characterization of an area at the same time that they satisfy the constraints imposed on hydraulic property values by the need to ensure that model outputs match field measurements. Model predictions can then be made using all of these fields as a mechanism for exploring predictive uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jane Austen is typically described as having excellent health until the age of 40 and the onset of a mysterious and fatal illness, initially identified by Sir Zachary Cope in 1964 as Addison's disease. Her biographers, deceived both by Cassandra Austen's destruction of letters containing medical detail, and the cheerful high spirits of the existing letters, have seriously underestimated the extent to which illness affected Austen's life. A medical history reveals that she was particularly susceptible to infection, and suffered unusually severe infective illnesses, as well as a chronic conjunctivitis that impeded her ability to write. There is evidence that Austen was already suffering from an immune deficiency and fatal lymphoma in January 1813, when her second and most popular novel, Pride and Prejudice, was published. Four more novels would follow, written or revised in the shadow of her increasing illness and debility. Whilst it is impossible now to conclusively establish the cause of her death, the existing medical evidence tends to exclude Addison's disease, and suggests there is a high possibility that Jane Austen's fatal illness was Hodgkin's disease, a form of lymphoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Article does not have an abstract.

Relevância:

20.00% 20.00%

Publicador: