11 resultados para BARORECEPTOR REFLEX

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of attention to a lead stimulus and of its sensory properties on modulation of the acoustic blink reflex were investigated. Participants performed a reaction time task cued by an acoustic or a visual lead stimulus. In Experiment 1, half the participants were presented with sustained lead stimuli. For the remainder, the lead stimulus was discrete and consisted of two brief presentations that marked the onset and offset of a stimulus-free interval. In Experiment 2, sustained lead stimuli were presented at a low or high intensity. The attentional demands of the task enhanced blink latency and magnitude modulation during acoustic and visual lead stimuli, with blink modulation being largest at a late point during the lead stimulus. Independent of the attentional effects, blink latency and magnitude modulation were larger during sustained than during discrete acoustic lead stimuli, whereas there was no difference for visual lead stimuli. Increases in the intensity of the lead stimulus enhanced blink modulation regardless of lead stimulus modality. Attention to a lead stimulus and the properties of the lead stimulus appear to have independent effects on blink reflex modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four experiments investigated the attentional modulation of acoustic blinks during continuous spatial tracking tasks. Experiment 1 found blink magnitude inhibition in a visual tracking task. Experiment 2 replicated this finding and also found blink latency slowing. Experiment 3 varied the difficulty of the task and found larger blink inhibition in the easy condition. Blink latency slowing did not differ and was significant at both difficulty levels. Experiment 4 employed less difficult visual and acoustic tracking tasks at two levels of task load. Blink magnitude inhibition during the visual and facilitation during the acoustic task was significant during high load in both modality groups. Blink latency was slowed in all visual task conditions and shortened in the difficult acoustic task. These results indicate that attentional blink modulation in a continuous spatial tracking task is modality specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blink reflex is modulated if a weak lead stimulus precedes the blink-eliciting stimulus. In two experiments, we examined the effects of the sensory modality of the lead and blink-eliciting stimuli on blink modulation. Acoustic, visual, or tactile lead stimuli were followed by an acoustic (Experiment 1) or an electrotactile (Experiment 2) blink-eliciting stimulus at lead intervals of -30, 0, 30, 60, 120, 240, 360, and 4,500 msec. The inhibition of blink magnitude at the short (60- to 360-msec) lead intervals and the facilitation of blink magnitude at the long (4,500-msec) lead interval observed for each lead stimulus modality was relatively unaffected by the blink-eliciting stimulus modality. The facilitation of blink magnitude at the very short (-30- to 30-msec) lead intervals was dependent on the combination of the lead and the blink-eliciting stimulus modalities. Modality specific and nonspecific processes operate at different levels of perceptual processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eye-blink startle reflex can be modulated by attentional and emotional processes. The reflex is facilitated during stimuli that engage attention. A linear pattern of emotional modulation has also been consistently demonstrated: the reflex is facilitated during unpleasant stimuli and attenuated during pleasant stimuli. However, during anticipation of pleasant or unpleasant stimuli it is unclear whether emotion or attention drives startle reflex modulation. This study used a differential learning procedure to investigate whether startle modulation during anticipation of a salient stimulus reflected emotional or attentional processes. In acquisition, a CS+ was paired with a pleasant or unpleasant US and a CS- was presented alone. In extinction, blink startle magnitude was measured during CS+ and CS-. Post-acquisition valence ratings and affective priming showed that CS+ had acquired the same affective value as the pleasant or unpleasant US with which it was paired. No differences in modulation of blink startle reflexes during pleasant CS+ and unpleasant CS+ were found throughout extinction. Blink startle facilitation occurred during CS+ but not CS- across the first third of extinction. Thus, attentional rather than emotional processes appeared to facilitate blink startle during anticipation of salient stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously observed a change in the magnitude of the soleus (SOL) and medial gastrocnemius (MG) H-reflexes during different sway positions of quiet standing. The purpose of the present study was to extend the earlier finding by examining whether the SOL and MG H-reflexes are additionally influenced by the velocity of sway, i.e., whether the body is swaying in either the forward or backward direction. Five healthy subjects participated in the study. The mean position of the centre of pressure (COP) in the antero-posterior direction was determined while the subject stood quietly on a force plate for 60 s. In contrast to the earlier study, where the H-reflex was tested at the outermost positions of sway (±6 mm from the baseline mean), the current study elicited a SOL and MG H-reflex as the COP passed through the mean position of sway. This resulted in two sway conditions, where the position of the COP was the same but the sway velocity was different (10 mm s-1 forward and 10 mm s-1 backward). During the forward as compared to the backward velocity condition, there was a 20% and 25% increase in the amplitude of the H-reflex for the SOL and MG muscles, respectively, while the size of their respective background activities were the same. SOL and MG M-waves, as well as the level of background activity from the antagonist (tibialis anterior), were not different between the two sway conditions and thus cannot account for the observed changes to the amplitude of the H-reflexes. It can be concluded from these results that the direction (velocity) of sway has the ability to influence the size of the SOL and MG H-reflexes. The facilitation of the SOL and MG H-reflexes observed while swaying forward may be due to a reduction in presynaptic inhibition or an improvement in Ia synaptic efficacy brought about by changes in muscle length.