7 resultados para BARIUM FLUORIDE NANOPARTICLES

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmenopausal Caucasian women aged less than 80 years (n = 99) with one or more atraumatic vertebral fracture and no hip fractures, were treated by cyclical administration of enteric coated sodium fluoride (NaF) or no NaF for 27 months, with precautions to prevent excessive stimulation of bone turnover. In the first study 65 women, unexposed to estrogen (-E study), age 70.8 +/- 0.8 years (mean SEM) were all treated with calcium (Ca) 1.0-1.2 g daily and ergocalciferol (D) 0.25 mg per 25 kg once weekly and were randomly assigned to cyclical NaF (6 months on. 3 months off, initial dose 60 mg/day; group F CaD, n = 34) or no NaF (group CaD, n = 3 1). In the second study 34 patients. age 65.5 +/- 1.2 years, on hormone replacement therapy (E) at baseline, had this standardized, and were all treated with Ca and D and similarly randomized (FE CaD, n = 17, E CaD, n = 17) (+E study). The patients were stratified according to E status and subsequently assigned randomly to NaF. Seventy-five patients completed the trial. Both groups treated with NaF showed an increase in lumbar spinal density (by DXA) above baseline by 27 months: FE CaD + 16.2% and F CaD +9.3% (both p = 0.0001). In neither group CaD nor E CaD did lumbar spinal density increase. Peripheral bone loss occurred at most sites in the F CaD group at 27 months: tibia/fibula shaft -7.3% (p = 0.005); femoral shaft -7.1% (p = 0.004); distal forearm -4.0% (p = 0.004); total hip -4.1% (p = 0. 003); and femoral neck -3.5% (p = 0.006). No significant loss occurred in group FE CaD. Differences between the two NaF groups were greatest at the total hip at 27 months but were not significant [p < 0.05; in view of the multiple bone mineral density (BMD) sites, an alpha of 0.01 was employed to denote significance in BMD changes throughout this paper]. Using Cox's proportional hazards model, in the -E study there were significantly more patients with first fresh vertebral fractures in those treated with NaF than in those not so treated (RR = 24.2, p = 0.008, 95% CI 2.3-255). Patients developing first fresh fractures in the first 9 months were markedly different between groups: -23% of F CaD, 0 of CaD, 29% of FE CaD and 0 of E CaD. The incidence of incomplete (stress) fractures was similar in the two NaF-treated groups. Complete nonvertebral fractures did not occur in the two +E groups, there were no differences between groups F CaD and CaD. Baseline BMD (spine and femoral neck) was related to incident vertebral fractures in the control groups (no NaF), but not in the two NaF groups. Our results and a literature review indicate that fluoride salts. if used, should be at low dosage, with pretreatment and co-treatment with a bone resorption inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption and excretion of fluoride and arsenic were measured in a group of healthy volunteers given drinking water with naturally high concentration of fluoride (F 2.3 mg/l), or high concentration of arsenic (As 0.15 mg/l), or high concentrations of both fluoride and arsenic (F 2.25 mg/l, As 0.23 mg/l and F 4.05 mg/l, As 0.58 mg/l), respectively. The results indicated that, for arsenic, the absorption rate, the proportion of urinary excretion and the biological-half-life did not show statistically significant differences between drinking water containing high arsenic alone and drinking water containing different levels of high arsenic and fluoride. Excretion and retention of arsenic were positively correlated to the total arsenic intake. Similar results were observed for fluoride. This suggests that there are different metabolic processes for arsenic and fluoride in respect to absorption and excretion; and no joint action can be attributed by these two elements. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.