4 resultados para BANDGAP
em University of Queensland eSpace - Australia
Resumo:
This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Design and development of a photonic bandgap (PBG)-assisted shared-aperture dual-band orthogonal aperture-fed rectangular microstrip patch antenna element, which is suitable for a portable very small aperture terminal (VSAT), are presented in this paper. The dual-band dual-polarized antenna element achieves 21% input impedance bandwidth at the S- and C-bands. A comparison of the antenna with and without 2D PBG grids shows that the inclusion of PBG structures (PBGSs) improves the antenna performances. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In general, conventional electromagnetic bandgap (PBGs) with uniform distribution show spurious ripples in pass-band and poor stop-band responses. This paper presents a detailed investigation in terms of pass-band and stop-band characteristics of uniplanar transmission line loaded with fractal shape PBGs. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.